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The approach to equilibrium for systems of reaction-diffusion equations on bounded domains is studied
geometrically. It is shown that equilibrium is approached via low-dimensional manifolds in the infinite-
dimensional function space for these dissipative, parabolic systems. The fundamental aspects of this process
are mapped out in some detail for single species cases and for two-species cases where there is an exact
solution. It is shown how the manifolds reduce the dimensionality of the system from infinite dimensions to
only a few dimensions.

I. Introduction

The accurate modeling of reactive flows requires the descrip-
tion of the interplay of chemistry and transport.1 Generally, the
range of time scales for the chemical-kinetic processes describ-
ing the chemistry is much larger than that for transport processes,
making the inclusion of complex chemical kinetics a challenge.
However, it is common for much of the chemistry to relax on
time scales shorter than the transport time scales, and it is
generally expected that some sort of reduced chemical descrip-
tion can be made so that the modeling of the full process
becomes more tractable. A great deal of work has focused on
this sort of reduction, and it is reviewed in several places,2 where
there are also reviews of other types of reduction techniques.
Reduction techniques that rely on reduced chemical descriptions
can often be viewed as generalizations of the well-known steady-
state approximation.3 In addition, there is a large amount of
literature on the reduction via perturbation techniques in
engineering and applied mathematics that are relevant to the
reduction of chemical kinetics and modeling.4,5

One of the modern approaches to kinetic reduction that builds
on the steady-state approximation recognizes the geometric3,6

character of the approximation. The steady-state approximation
is replaced by more accurate representations relying on a better
description of the dynamics of the chemical kinetics. Important
work by Fraser and Roussel,6-9 Lam and Goussis,10 and Maas
and Pope11,12provides the foundations for this approach as well
as important insights and techniques. These references have
provided the impetus for a number of studies that have
followed.5,13-21 The methods presented in these references rely
on the fact that the approach to equilibrium occurs along lower-
dimensional surfaces in the phase space of the species,15 so-
called low-dimensional manifolds.

The methods of reduction that rely on low-dimensional
manifolds use techniques borrowed from the dynamical-systems
literature.22 Reference 15 has detailed analyses of these ap-

proaches from a dynamical-systems perspective. This paper is
the first in a series that extends the dynamical-systems approach
to the study of nonlinear partial differential equations involving
the interplay between reaction and transport, with the goal of
investigating their reduction within a geometric framework. The
purpose of these papers is to understand the interplay between
transport and chemistry and to try to understand the types of
reductions that are possible, particularly when there is no longer
a clear separation between kinetics and transport or at time scales
so long that slow diffusion is important.

There are several earlier papers that have studied the interplay
of reaction and transport within a geometric framework.12,18,23,24

Like these references, the current paper focuses on the interplay
between kinetics and diffusion, concentrating on systems of
dissipative reaction-diffusion equations that relax to a single
equilibrium distribution for the chemical species. From earlier
work,12 it is expected that diffusion is more important than
advection in making reduced chemical descriptions invalid.
Several different small systems are studied here to provide a
foundation for what is presented in the paper that follows this
one.25 This paper and the follow-up paper concentrate on the
final stages of relaxation to equilibrium, while later ones focus
on shorter times.26

To make the discussion in this Introduction more concrete, a
result is presented for the system studied in ref 25, the
combustion of ozone under isothermal conditions and under the
influence of diffusion. There are three species that participate:
O, O2, and O3. The top two panels in Figure 1 show results for
O2. Figure 1a shows the concentration profile of O2 at two times.
The thinner dotted line is att ) 0, and the thicker dotted line
is at t ) 1 ms. Figure 1b shows results for a different initial
distribution at the same two times, with the thin dashed line
showing t ) 0 and the thicker dashed linet ) 1 ms. The
parameters describing the system are listed in the figure caption.
The plots in Figure 1b highlight two pairs of points. Points at
x ) 0.49 are plotted as an open square on thet ) 0 curve and
a filled square on thet ) 1 ms curve. Points atx ) 0.77 are
plotted as an open diamond on thet ) 0 curve and a filled
diamond on thet ) 1 ms curve.
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In Figure 1c results from ozone combustion are plotted in a
different manner. There are two sets of curves plotted in Figure
1c. The set of curves on the left of Figure 1c follow the evolution
of the distributions from the top two panels by plotting the
concentration of O2 versus the concentration of O at the spatial
point x ) 0.49 for both species (the range is from 0.0 to 1.0).
The results for these distributions are plotted with the same line
types as they are in Figures 1a and 1b. The symbols on the
dashed curve match the symbols on the distributions plotted in
Figure 1b. The solid dot shows the equilibrium value of the O2

and O distributions atx ) 0.49.
In addition to results for the distributions in the top two

panels, there are four other curves on the left side of Figure 1c.
Three of these are plotted with thin solid lines and a fourth
with a thicker solid line. The three thin-line curves result from
the time development of three additional initial distributions. It
can be observed in the left part of Figure 1c that all five sets of
initial distributions asymptotically approach the thicker solid
line. This latter curve is what is referred to as a “low-
dimensional manifold”. When a system reaches such a manifold,
there is a reduction in the number of partial differential equations
that need to be followed. The curve on the left of Figure 1c
demonstrates that after∼1 ms the concentration of O2 is a
function of O. Plots of O3 versus O also show a functional
relationship. On the low-dimensional manifold the system of
partial differential equations has been reduced from three to one,
with the behavior of the other two species (O2 and O3) described
by the functional relationships defined by the low-dimensional
manifold.

The curves on the left in Figure 1c demonstrate that all initial
distributions relax to equilibrium in a similar manner, first
approaching a one-dimensional curve in the space of species

on the way to equilibrium. This is a standard result in the study
of low-dimensional manifolds for systems of ordinary dif-
ferential equations approaching equilibrium. The presence of
spatial coordinates and the effects of diffusion may cause
modifications to the simplest picture of this process, as refs 18,
23, and 24 indicate, but does not represent a reduction of the
system to finite dimensions, because even a single partial
differential equation defines an infinite-dimensional dynamical
system.

What this paper is focused on is the reduction indicated by
the right-hand set of curves in Figure 1c. These curves were
generated by plotting the value of the concentration of O2 versus
the concentration of O atdifferentspatial points,x ) 0.29 for
O and x ) 0.77 for O2. The figure indicates that this
representation also approaches a single curve (thick line),
although different than the one on the left of the panel. The
dashed and dotted curves on the right correspond to the same
pair of initial distributions as on the left set of Figure 1c and
the distributions in Figures 1a and 1b. The solid and open
diamonds are the points plotted in Figure 1b with the same
symbols. The solid dot is the coordinate pair formed from the
equilibrium value of O atx ) 0.29 and O2 at x ) 0.77. The
solid triangle on the right set of curves is the coordinate pair at
t ) 4.6 ms.

The set of curves on the right in Figure 1c indicates that the
system of three partial differential equations is reduced beyond
what is implied by the left set of curves. At a time between 1.0
and 4.6 ms the system of partial differential equations has been
reduced to a one-dimensional system. At that point it can be
described by a single ordinary differential equation and a set of
functional relationships between the value of O at a single point
and the values of all species (O, O2, and O3) at all other spatial
points. The time is set between 1.0 and 4.6 ms based on the
fact that the closed diamond on the right and the closed square
on the left are both plotted at the same time. The closed square
lies on the manifold that describes the reduction of the number
of partial differential equations, and the closed diamond on the
right does not lie on the manifold describing the reduction to
one ordinary differential equation. The solid triangle on the right
does indicate that such a final reduction occurs by 4.6 ms.

The purpose of this paper and the follow-up paper25 is to
study the process pictured in Figure 1c in detail. The present
paper will describe several fundamental aspects of this process,
relying mostly on systems for which there is an analytical
solution. Reference 25 will use the systems studied in this paper
to develop methods to extend the analysis here to systems such
as the ozone example in Figure 1.

The outline of this paper is as follows. Section II introduces
the notion of an infinite-dimensional phase space for a single
diffusion equation. It then shows that the reduction to finite
dimensions is a straightforward consequence of dissipation. It
then demonstrates how this notion can be extended analytically
to an isolated, irreversible unimolecular reaction in the presence
of diffusion and numerically to a nonlinear problem, an
irreversible association reaction. For this latter case, it is natural
to study local, linearized dynamics that is introduced for that
single reaction-diffusion equation and extended to systems of
nonlinear reaction-diffusion equations in Appendix B.

Sections III and IV extend the analysis of section II to two
systems of reaction-diffusion equations that have analytic
solutions, one of which is nonlinear (section IV). These sections
show the conditions under which attractive one-dimensional and
two-dimensional manifolds are relevant for relaxation to equi-
librium. The systems studied in these sections are meant to

Figure 1. Series of plots for an ozone reaction-diffusion system.
Temperature is fixed at 1000 K, with the same kinetic parameters as
in refs 18 and 25, and all diffusion constants are fixed at 100.0.25 Figures
1a and 1b show distribution functions for O2 at two different times
propagated from two different initial distributions. In Figure 1c the
concentrations of O2 and O are plotted in phase space. For the set of
curves on the left O and O2 are plotted atx ) 0.49, and for the right
set O is plotted at 0.29 and O2 at 0.77. The spatial extent of the problem
in these scaled units is 0.0 to 1.0. See text for further details.

5236 J. Phys. Chem. A, Vol. 110, No. 16, 2006 Davis



provide test cases for the methods proposed in ref 25. Section
V presents additional discussions and a conclusion. There are
seven appendices that provide additional technical details.

II. The Diffusion Equation, Reaction-Diffusion
Equations, and Dynamical-Systems Analysis

A. The Diffusion Equation, Infinite-Dimensional Phase
Space, and Low-Dimensional Manifolds.An integral part of
the description of reactive flows1 is the notion of diffusion,
which is described in one spatial dimension (within a hydro-
dynamic formulation) as27

which assumes a constant diffusivity,D, typically referred to
as the diffusion constant. In the context of reactive flows, eq
2.1 is posed as an initial boundary problem.27 The boundary
conditions used here are

that are analogous to typical boundary conditions studied in one-
dimensional flame calculations,28 where the transport is more
complicated because it includes advection and typically has
nonconstant diffusivity. Initial conditions are specified as

wherey0 is the equilibrium distribution ofy, which solves

and has the correct boundary conditions. It is a constant in this
case. The sine functions in eq 2.3 are eigenvectors of the
Laplacian on the right-hand side of eq 2.1.

As indicated in eq 2.2, for convenience the spatial domain is
always chosen to be the unit interval in this paper. ChangingD
in eq 2.1 is equivalent to changing the spatial domain. For
example, changing the length of the spatial domain by a factor
r is equivalent to changing the diffusion constant by 1/r2.

The solution of eq 2.1 with boundary conditions in eq 2.2,
initial conditions in eq 2.3, and an equilibrium distribution
satisfying eq 2.4 is

Because it takes an infinite number of terms to describe the
time development of a distribution, partial differential equations
are sometimes referred to as infinite-dimensional dynamical
systems.29,30

Homogeneous chemical kinetics is described by ordinary
differential equations, and a number of studies of low-
dimensional manifolds in chemical kinetics have studied them
in the context of the phase space of the chemical species.6-9,11,15,18

In analogy to that work, the present paper studies reaction-
diffusion equations in a phase space, as indicated already in
Figure 1, and this distinguishes the present paper from earlier
work on manifolds for partial differential equations describing
reaction and diffusion.18,23,24To study the phase space of the

diffusion equation, a specification of spatial location is necessary
and the designation

refers to the evaluation of the distributiony(x,t) at the spatial
point xâ. Here and in the rest of the paper displacement ofy
from equilibrium atxâ (y(xâ,t) - y0) will be referred to asyâ,
or more generallyykâ, denoting thekth coordinate of an
n-dimensional system. A two-dimensional projection of the
infinite-dimensional phase space will be designated as a
“yâ/yσ” projection. Such projections will be used to study the
functional relationship betweenyâ and yσ during the time
development of the distributiony(x,t), as indicated in Figure 1.

Although the phase space is infinite-dimensional, the diffusion
equation is dissipative, as indicated in eq 2.5. As time increases,
fewer terms are needed to describe the time development ofy
because the higher terms become very small and the system
effectively becomes a finite-dimensional one. It eventually
relaxes to an equilibrium distributiony ) y0, which is described
by an infinite set of equal coordinatesyâ ) y0 and is a single
point in the infinite-dimensional phase space. A single point in
the phase space is a zero-dimensional manifold. All of the other
cases studied here will have equilibrium distributions that are
not spatially constant. These also are single points in the infinite-
dimensional phase space but with a set of pointsyâ ) y(xâ).

Appendix A has a detailed description of the relaxation of
the diffusion equation through phase space. A simplified
description of this relaxation is presented in this subsection. The
final approach to equilibrium for the diffusion equation is
described by

which is a line in the infinite-dimensional phase space. To define
a projection onto the phase space of the species, time and the
initial condition are eliminated. First rewrite eq 2.7 and define
it at a pointxâ

Then a projection of the line onto theyâ/yσ plane is defined

The relaxation outlined above is generic for dissipative
systems. What makes the notion of a low-dimensional manifold
useful is a separation of time scales, characterized here by the
attractiveness of a particular manifold. In general, for nonlinear
systems, it is difficult to judge such a quantity except in a local
linear sense, and often a visual inspection of the phase plane is
all that is done. However, in many of the cases studied here,
both linear and nonlinear, good global estimates of the at-
tractiveness can be obtained. The basis for this is presented here
for the diffusion equation and implemented in several examples
in the rest of the paper. Consider the next term in the expansion

∂y
∂t

) D
∂

2y

∂x2
(2.1)

y(x ) 0) ) y0
∂y
∂x

(x ) 1) ) 0 (2.2)

y(x,0) ) y0 + ∑
n)0

∞

an sin(n +
1

2)πx (2.3)

0 ) D
∂

2y

∂x2
(2.4)

y(x,t) ) y0 + ∑
n)0

∞

an e-(n+1/2)2π2Dt sin(n +
1

2)πx (2.5)

y(xâ,t) ) y0 + ∑
n)0

∞

an e-(n+1/2)2π2Dt sin(n +
1

2)πxâ (2.6)

y(x,t) ) y0 + a0 sin
πx
2

e-π2Dt/4 (2.7)

a0 e-π2Dt/4 )
y(xâ,t) - y0

sin
πxâ

2

(2.8)

yσ )
yâ

sin
πxâ

2

sin
πxσ

2
(2.9a)

yâ ≡ y(xâ) - y0 yσ ≡ y(xσ) - y0 (2.9b)
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of eq 2.7 and evaluate both terms at two different points, written
in matrix-vector notation

as well as the initial conditions projected onto the same plane

Inversion of the matrix in eqs 2.10 and 2.11 defines the
exponentials

with the numerator of eq 2.12b describing the manifold from
eq 2.9a. These equations use the definitions from eq 2.9b, with
the obvious generalization to defineyâ0 andyσ0. Through the
use of eqs 2.12a and 2.12b the behavior in phase space is
observed to have the following form

Equation 2.13a states that the system relaxes to the manifold
(u ) 0), and eq 2.13b describes the rate of the attraction.
Manifolds whose values ofR are too low will not be considered
very attractive and not useful for dimension reduction.

The goal of the rest of this paper is to study finite-dimensional
manifolds such as those outlined here and in Appendix A for
reaction-diffusion equations, both linear and nonlinear, and for
systems of reaction-diffusion equations.

B. Reaction-Diffusion Equations. Two examples of one-
species cases are used as a further introduction to finite-
dimensional manifolds.

1. IrreVersible Unimolecular Reaction.The spatio-temporal
behavior of a species that diffuses and undergoes an irreversible
unimolecular decay is written as

The spatial domain and the boundary conditions are the same
as those in section IIA. For the casek ) 0 the reaction-diffusion
equation becomes the diffusion equation discussed in section
IIA. The behavior ofy is

for the initial distribution

The equilibrium distribution is

The results in eqs 2.15-2.17 can be compared to eq 2.5. The
two differences between the reactive and nonreactive cases are
the nontrivial equilibrium state for the reactive case and a change
in the time dependence in the exponential describing the
unimolecular decay.

The behavior observed in Figure 1 can be understood for the
current reaction-diffusion equation by noting that eq 2.15
indicates an approach to equilibrium whose final stage is one-
dimensional and has the form

where the functiony is evaluated at the pointxâ in the unit
interval. Time can be eliminated, and the value ofy at a second
point, xσ, can be found as in section IIA and Appendix A

which again is a projection of a line from the infinite-
dimensional phase space onto a plane. The notation of eq 2.9
has been generalized to include a nonconstant equilibrium
distribution. Equation 2.19 demonstrates that the manifold
depends on the relative sizes ofk and D only through the
equilibrium distribution (eq 2.17).

Examples of the projections of the time development of
distributions and how they approach the manifold in eq 2.19
are shown in Figure 2 for different initial distributions fork )
y0 ) 1, xâ ) 0.25, andxσ ) 0.65. The top panel shows results
for D ) 0.1 and the bottom panel forD ) 10.0. The solid line
shows the projection onto the plane of the linear, one-
dimensional manifold. The dashed curves show four “trajecto-
ries”, which are the time development of two points along the
four different distributions defined in eq 2.16. Comparison of
the two panels indicates that asD gets larger the attraction to
the manifold gets stronger. In the top panel the dashed lines
show that trajectories go almost directly to the equilibrium point,
drawn as a solid dot. In the bottom panel the dashed curves are
attracted to the manifold much more rapidly, spending a good
bit of time on their way to equilibrium.

To understand the approach to the manifold pictured in Figure
2, it is assumed that the initial distribution is generic in the

(yâ(t) - y0
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sense that the summation in eq 2.16 has a reasonable mixture
of expansion coefficients, thean values, and is not centered
mostly on a single component. Then the analysis of section IIA
and Appendix A is repeated starting with

that uses the notation of eq 2.19 and is a slightly modified
version of eq 2.10 and ending with the following

To understand these equations more fully, see the derivation of
eqs 2.12a and 2.12b. Once again,u ) 0 defines the manifold
of eq 2.19.

Equations 2.21a and 2.21b, as well as Figure 2, demonstrate
that the apparent attractiveness of the manifold is controlled by
the relative sizes ofk andD. Equation 2.21b demonstrates that
R can never be greater than 9, the value for the diffusion
equation in eq 2.13b. This is different than the case of manifolds
for pure chemical-kinetic systems, where the stiffness is
controlled by the relative rate constants and can be quite large.
Equation 2.21b demonstrates that there is very little attraction
unlessD is large compared tok, otherwise the relaxation is
controlled by the reaction and the manifold is not very attractive
at all.

It is also possible to define two-dimensional manifolds, and
Appendix G.1 does that for the system studied in this subsection.
The rest of the paper will study one-dimensional and two-

dimensional manifolds, because they describe the final approach
to equilibrium. It is not hard to define higher-dimensional
manifolds for linear systems.

In general, unlike the system studied here, the reactive part
of a reaction-diffusion equation is nonlinear, and a less detailed
analysis is possible. The next subsection extends some of the
analysis to a nonlinear reaction-diffusion equation near equi-
librium to demonstrate how some of this analysis is done.

2. IrreVersible Association Reaction.The simplest nonlinear
reaction-diffusion equation describes an irreversible association
reaction

Although this system depends on two parameters,k andD, most
of the analysis in this subsection requires only the ratio

The equilibrium state satisfies

Through the use ofη, eq 2.22 can be rewritten as

with

which reveals that the geometric structure of phase space does
not change with the transformation, although time is scaled.
The importance ofη is also clear in the previous subsection,
where a similar analysis could be done on eqs 2.15-2.17.

Equation 2.22 is nonlinear iny and analytical solutions such
as those in the previous subsection are formidable, even if
possible, so a numerical approach is undertaken to solve the
equation. The partial differential equation is replaced by a set
of ordinary differential equations31

wherey(x,t) is defined on a grid of equally spaced spatial points
and the second derivative in eq 2.22 is calculated by finite
differences. This method is commonly called semidiscrete or
method-of-lines. There are much more sophisticated versions
of the algorithm.31,32 Only points interior to the boundary are
propagated with this system of ordinary differential equations.
The point on the boundary atx ) 0 is fixed by the boundary
condition asy0. In turn, y0 is used to definey1

The point on the right boundary is defined by the no-flux
condition in eq 2.2, and the propagation of the rightmost grid
point uses this constraint and the formula for backward second
differences.33

Although it is not possible to analytically derive low-
dimensional manifolds for eq 2.22, the plots in Figure 3

Figure 2. Results for four initial distributions (dashed curves), whose
time development is described by eq 2.15. The solid dot shows the
value of the equilibrium distribution for these pairs (eq 2.17). Both
panels were generated fork ) 1.0, and the top panel has results forD
) 0.1, and the bottom forD ) 10.0. The distributions are monitored
at two different points;x ) 0.25 describes thex-axis, andx ) 0.65
describes they-axis. The dashed lines approach a one-dimensional
manifold that is described in eq 2.19. WhenD is smaller thank in the
top panel the manifold is less attractive than it is whenD is larger than
k, as it is in the bottom panel. The relative attractiveness is described
by the parameterR, which is defined in eqs 2.21a and 2.21b. For the
top panelR ) 2.6, and for the bottom panelR ) 8.7 (eq 2.21b).
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demonstrate that the system is attracted to a one-dimensional
manifold, because of the behavior of the dynamics of the four
initial distributions plotted as dashed lines in both panels of
Figure 3. The trajectories derived from these distributions appear
to be attracted to a one-dimensional curve in both panels of
Figure 3, demonstrating that these systems possess one-
dimensional manifolds similar to those in Figure 2. The first
approximation to a manifold for a nonlinear system is a linear
one, and Figure 3 demonstrates that a linear manifold (solid
line) almost perfectly describes the strongly attractive case in
the bottom panel and is close to the correct manifold in the top
panel, based on the behavior of the trajectories. Although the
nonlinearity of the system is not manifest to any degree in Figure
3, it has important consequences for the degree of attractiveness
of the manifolds. These consequences are most readily analyzed
in the vicinity of the equilibrium distribution.

The linear approximations to manifolds pictured in Figure 3
were generated from stability analysis near the equilibrium
configuration, which is a generalization to partial differential
equations of the stability of equilibrium points in ordinary
differential equations.34-36 A small displacement in function
space away from equilibrium gives the following linear partial
differential equation

whereδy describes an infinitesimal displacement in function
space away from the equilibrium stateyeq(x). Only whenyeq is
constant may eq 2.28 generally be solved analytically, usually
as a sum over basis states. However, a numerical solution of
eq 2.28 can be generated starting with a basis set consisting of
the eigenvectors of the diffusion equation, as described in section
IIA, or on a grid as is done in eq 2.27. For consistency, this
latter technique is used, and a set of ordinary differential
equations describing the functional displacements is written

As in eq 2.27, points adjacent to the boundary have a different
definition.

Equation 2.29 can be written as a matrix-vector product

If the eigenvalues ofJ are labeled asλi and ordered with the
lowest in magnitude designated asλ0 (they are all negative),
then the spatio-temporal behavior of theδyk values is

BecauseJ is a real general matrix, it has left eigenvectors
described here by the matrixL and right eigenvectors described
by matrix R,37 so that diagonalization is written as

where “T” refers to the transpose, and the expansion coefficients
and eigenvectors in eq 2.32 are

where it is understood that theR and L values are properly
normalized andδyi0(xk) refers to an initial functional displace-
ment on a grid of points.

Equation 2.31 indicates that a small displacement will relax
and the analysis of the manifold in the previous subsection can
be reproducednear the equilibrium distributionyeq

with the notation of eq 2.19 again used. The linear manifolds
in Figure 3 were calculated using eq 2.34. Because the
eigenvectorΦ0(x) is nearly a sine function whenη is small (see
below) results are similar to the previous subsection. However,
in general, manifolds are not linear, and the top panel in Figure
3 shows some deviation from linearity in the behavior of the
trajectories.

Near equilibrium it is possible to look at the attractiveness
of the manifolds for eq 2.22, as was done globally in eqs 2.21a
and 2.21b. Analysis similar to what was done there defines the
generalization of eq 2.21b as

Through the use of eq 2.35, Figure 4 compares numerical results
for the nonlinear equation in this subsection with results for
the linear, unimolecular case in eq 2.21b. In the top panel, the
dashed line shows the approach to 1.0 for the linear case, and
the solid line shows that the nonlinear, association reaction
always stays attractive even asη gets large, a situation where
diffusion is much slower than reaction. Although the manifold
is attractive for the largeη case near equilibrium, it is less
attractive than the smallη cases shown in the top panel, where
R approaches an asymptote of 9 and where diffusion is much
faster than reaction.

Another aspect of the nonlinear system versus the linear one
in the previous subsection is that the ratio of adjacent eigen-
values is smallest for the first two, something not necessarily
true in eq 2.21b, at least for largeη. This is demonstrated in

Figure 3. Plots similar to those for Figure 2, but generated for eq
2.22. The top panel demonstrates that the nonlinearity of the system
leads to deviation from the linear manifold shown as solid lines in the
two panels. The nonlinear system in the top panel is also more attractive
than the linear version in Figure 2, with results presented below
describing this. The text has further important details.
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the second panel of Figure 4, where the solid line shows a series
of ratios of adjacent eigenvalues for the nonlinear, association
reaction and the dashed line shows results for the unimolecular
reaction from eq 2.21b, where the ratio reaches a minimum away
from n ) 0. The results in this panel suggest that the
one-dimensional manifold for the association reaction is more
attractive than higher-dimensional manifolds in the vicinity of
the equilibrium distribution and that it is not the most attractive
for the linear case, at least when the attractiveness is weak. From
our experience with nonlinear reaction-diffusion equations of
the type studied in this paper, the degree of attractiveness
increases monotonically as the dimension decreases.

The consequences of the attractiveness near equilibrium are
evident away from equilibrium, as shown in the third panel of
Figure 4. Although the system is not as attractive as the one in
the bottom panel of Figure 3, it is much more attractive than
the linear case of the previous subsection, which exhibits no
attraction atη ) 1000, as shown in the bottom panel.

To further illustrate the effects of nonlinearity, a comparison
of the lowest right eigenvectors is shown in Figure 5 at small
η (top) and largeη (bottom), which are plotted as solid lines.
These are compared to sin(πx/2), the lowest eigenvector of the
diffusion equation, plotted as a series of dots in the top panel
and as a dashed line in the bottom panel. Figure 5 demonstrates

that at smallη the lowest eigenvector is nearly the same as the
linear eigenvector but is far from it at largeη. It is clear from
Figure 5 that for smallη diffusion dominates the attractiveness.
For largeη, there appears to be a complex interplay between
reaction and diffusion and it is difficult to rationalize the form
of the eigenvector in the bottom panel of Figure 5 or the
asymptotic value of 1/R (0.3579) for the solid line in the top
panel of Figure 4.

The weak deviation from nonlinearity observed in the top
panel of Figure 3 can be more pronounced for systems of
nonlinear reaction-diffusion equations, as is clear in Figure 1c,
and methods need to be developed to generate them. This will
require the extension of some of the analysis in this subsection
to systems of nonlinear reaction-diffusion equations, and this
is presented in Appendix B.

III. Isomerization with Diffusion
The examples in section IIB demonstrate how the phenom-

enon in Figure 1 can arise for a single reaction-diffusion
equation. The analysis is now extended to systems of reaction-
diffusion equations, for a system where the solution once again
can be derived in closed form as a summation. Another purpose
of this section is to extend the analysis of the competition
between reaction and diffusion and the various scenarios where
this competition leads to attractive one- and two-dimensional
manifolds.

A. The System.Consider the reversible isomerization reaction

Under conditions where the two species diffuse with unequal
but constant diffusivities, the spatio-temporal behavior of the
system is described by

where they values refer to concentrations or densities of A and

Figure 4. How the attractiveness near equilibrium changes withη (k/
D, eq 2.23) for the linear (dashed line) and nonlinear system (solid)
described in the text. The linear system approaches 1.0, which is no
attraction at all, while the nonlinear system reaches an asymptote of
1/R ) 0.36. The second panel from the top describes the ratio of
successive pairs of eigenvalues near equilibrium for the linear (dashed)
and nonlinear (solid) systems. This demonstrates that for low-
dimensional manifolds, the nonlinear system is more attractive near
equilibrium than the linear one for low-dimensional manifolds. The
bottom two panels demonstrate how nonlinearity affects the global
attractiveness of a manifold, at the same value ofη. For the nonlinear
system in this subsection (second from bottom) the manifold is much
more attractive than it is for the linear case (bottom), as anticipated
from the analysis near equilibrium in Figure 1a.

Figure 5. Comparisons to the lowest eigenvectors ofJ (eq 2.30) at
equilibrium for two values ofη. Both panels show the eigenvector as
a solid line. In the top panel at lowη the eigenvector is almost identical
to the eigenvector of the diffusion equation (dots in the top panel). In
the bottom panel, at a highη, the eigenvector is very different from
the eigenvector of the diffusion equation (dashed line).

A S B (3.1)

∂y1

∂t
) -k1y1 + k2y2 + D1

∂
2y1

∂x2
(3.2a)

∂y2

∂t
) k1y1 - k2y2 + D2

∂
2y2
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B and thek values are forward and reverse rate constants.
Boundary conditions for both species are the same as those in
eq 2.2. The initial distributions

and

lead to a set of coupled equations for theb values

The equilibrium distributions satisfy

wherey1
eq andy2

eq refer to the equilibrium distributions of the
two species, with the spatial dependence suppressed. Appendix
C describes the full solution of this isomerization example.

B. One-Dimensional Manifolds.The analysis of section IIB
is extended to the system of eq 3.1, by using the time
development in eqs C.1a and C.1b and the fact thatλ10 is always
the lowest eigenvalue in magnitude. The one-dimensional
manifold can be represented in several ways. For example, a
spatial value ofy2 can be defined in terms of a spatial value
of y1

and any other spatial value ofy1 can be defined in terms ofy1â
with the following

Because the system is linear, the manifolds are straight lines.
The notation employed in eqs 3.6 and 3.7 has been adapted
from section II. For example

and the rest of the notation follows. The spatial pointsxâ and
xσ can be the same or different. Equations 3.6 and 3.7 usey1â
as the independent variable, buty2σ could be used, or some linear

combination. These choices merely fix a projection of the one-
dimensional manifold, which is embedded in an infinite-
dimensional space. It is straightforward to derive the ratio
R21

0 /R11
0 , but it is not included in the paper, although it is used

in the calculations.
C. Attraction to the One-Dimensional Manifolds. The

analysis of the approach to the one-dimensional manifold
follows from Appendix D. Because the analysis assumes the
final attraction is from a two-dimensional manifold, the approach
depends on whether the system parameters define it as a
manifold of type 1 or type 2 (Appendix G.2). For type 1, the
approach to the one-dimensional manifold on ay2σ/y1â projection
is written in the usual form

The coordinatesu1 andu2 are

wherey1â
0 and y2σ

0 are the obvious generalizations of eqs 3.8.
For type 2 manifolds (eq G.2b), the approach is

with the following coordinates

D. Numerical Examples.As outlined above and in Appendix
G.2, the attractiveness of the one- and two-dimensional mani-
folds and the nature of the two-dimensional manifolds depend
on the ordering of the eigenvalues, which in turn depends on
the relationship of the rate and diffusion parametersk1, k2, D1,
andD2, as indicated in eqs 3.11a and 3.11b and the eigenvalues
presented in Appendix C. All possible scenarios for the nature
of the one- and two-dimensional manifolds can be summarized
with three parameters
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eq(x) + ∑

m

b1m(0) sin[(m +
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eq(x) + ∑

m

b2m(0) sin[(m +
1
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2)2
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The parameterú1 fixes the relative size of the diffusion versus
reaction, and the other two parameters fix the actual values of
the attractiveness defined in section IIIA. The attractiveness of
the one-dimensional manifolds for the two types of manifolds
(eqs G.2a and G.2b) are

or

Figure 6 summarizes the attractiveness of the one-dimensional
manifolds at three values ofú1: 0.1, 1.0, and 10. In physical
terms, these refer to situations where reaction is fast compared
to diffusion, where diffusion and reaction compete, and where
diffusion is fast compared to reaction. These plots show contours
of constant R, calculated from the ratio of the first two
eigenvalues. The dashed lines in the panels show the boundaries
between the different cases. In the panels, contours are drawn
from R ) 2.0 to R ) 8.0 in increments of 1.0. The lowest
contour is drawn as a dotted line, the largest contour at 8.0 as
a thick solid line, and the other contours with normal solid lines.
In the top panel the minimum contour value is 4.0, and in the
bottom two it is 2.0. In all the panels, the largest region is
labeled. The largest region in the top panel is case 1, and the
largest regions in the bottom two panels are case 2.

Figure 6 demonstrates that the attractiveness of manifolds is
dependent on the relative rate of diffusion versus reaction, as
measured byú1. When diffusion is slow compared to reaction
as it is in the top panel of Figure 6, there is a very wide range
of systems with highly attractive one-dimensional manifolds.
Whenú1 is larger in the bottom two panels of Figure 6 there is
a much narrower range of systems where there are highly
attractive manifolds. The top panel of Figure 6 also indicates
that systems with the most attractive manifolds lie along a ridge
where

that indicates that the relative difference in the diffusion rates
is similar to the relative reaction rates.

As diffusion and reaction become comparable in the middle
panel of Figure 6 and then diffusion becomes greater than
reaction in the bottom panel, the range of systems that exhibit
strongly attractive manifolds first narrows (middle panel) but
then begins to become larger in the bottom panel. Also, the
conditions for highly attractive manifolds changes in the bottom

two panels compared to eq 3.15, and for these latter examples
the attractiveness depends on the faster reacting species also
diffusing rapidly: if D1 > D2, thenk1 > k2, and vice versa.

The two scenarios for attractive one-dimensional manifolds
rely on a separation of time scales. The separation of time scales
happens in two ways. The first way is observed in the top panel
and is separation of time scales between the two physical
processes; the diffusion is slow compared to reaction. The other
scenario is evident in the bottom panel and involves a separation
of time scale between species; one species is slow to react and
slow to diffuse, and the other is fast to react and fast to diffuse.

Figure 7 summarizes the attractiveness of the two-dimensional
manifolds, for the same three values ofú1 as Figure 6. Contour
values for the bottom plot follow the conventions of Figure 6,
but the top two plots are much flatter and only one contour
value (2.0) is plotted on the top panel and four on the middle.
The highest point on the top panel isR ) 2.8. The middle panel
contours start with 2.0 and end with 5.0. The lowest contour at
2.0 is plotted with a dotted line and the highest at 5.0 with a
thick solid line. Seams are again plotted as dashed lines in Figure
7 and separate three cases, labeled 1-3, which follow the
conventions of eq G.7. A comparison of Figures 6 and 7
indicates that systems that have the most attractive one-
dimensional manifolds have relatively unattractive two-dimen-
sional manifolds, and vice versa.

Figure 7 demonstrates the physical conditions under which
two-dimensional manifolds are most attractive. When diffusion
is slow (top panel), two-dimensional manifolds are not very
attractive. The situation changes somewhat in the middle panel,
which has a maximum value ofR ) 5.3. It demonstrates that
the most attractive manifolds are forD1 = D2. In the bottom
panel the same condition leads to even more attractive manifolds
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k1 + k2
(3.13a)
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k1 + k2
-ú1 e ú2 e ú1 (3.13b)

ú3 )
k1 - k2

k1 + k2
-1 e ú3 e 1 (3.13c)
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2
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D1 - D2

D1 + D2
=

k1 - k2

k1 + k2
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Figure 6. Attractiveness of the one-dimensional manifolds at three
values ofú1 (eq 3.13a). The contours show values ofR ranging from
a minimum (dotted lines) to the maximum of 8.0 (solid lines). In the
top panel, the minimum contour is at 4.0, and in the bottom two the
minimum contour is 2.0. The dashed curves delineate the change from
case 1 to case 2 outlined in the text.
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with the maximumR being 8.3. Figure 7 indicates that the
maximum attractiveness of two-dimensional manifolds is for
systems where both species diffuse faster than they react and
do so at approximately an equal rate. These conditions lead to
a system that behaves in a manner similar to a pure diffusion
equation, such as the one studied in section IIA.

The behavior of systems as they approach the one-
dimensional manifolds is shown in Figure 8. These plots show
y1â/y2σ projections of the one-dimensional manifolds (eq 3.6),
with manifolds plotted as thick solid lines and equilibrium
positions as large solid dots. Results for the propagation of four
different initial distributions are plotted as dashed lines in all
the panels. Values forxâ and xσ are listed in the axes labels.
Figure 8 demonstrates the qualitative differences in the at-
tractiveness of the manifolds. The behavior of trajectories in
Figure 8 can be compared to the values ofR. For example, the
plot on the upper left shows a system whose one-dimensional
manifold is strongly attractive andR ) 8.7. The system on the
upper right has a manifold that is not very attractive, with the
system relaxing almost directly to equilibrium. It has a value
of R of 1.5.

A two-dimensional manifold is studied in Figure 9 for the
system on the upper right of Figure 8. A y1â/y2σ/y2φ projection
is used. The one-dimensional manifold in Figure 8 hasR )
1.5, and the two-dimensional manifold in Figure 9 hasR )
5.9. This relative difference is evident in the comparison of the
panel in Figure 8 and the plot in Figure 9. There is almost no
attraction to the one-dimensional manifold in Figure 8, but a
strong attraction to the two-dimensional manifold in Figure 9.
The separation of time scales for the system in Figure 9 is one
of the cases discussed for Figure 7.D1 andD2 are close enough

that the system is similar to the one-dimensional diffusion
equation, with pairs of eigenvalues in the isomerization case
being similar to single eigenvalues in the diffusion equation
example.

IV. A Nonlinear Reaction-Diffusion System

The analysis of systems of reaction-diffusion equations is
now extended to one which is nonlinear but which has a closed
form solution in terms of a summation. This system once again
will be studied for how the competition between reaction and
diffusion affects the low-dimensional manifolds. In addition,
because of the nonlinearity it will provide a test for the numerical
methods developed in the subsequent paper.25

A. The System and Its Solution.The analysis in section III
is extended to a nonlinear system

with boundary conditions defined in eq 2.2 and the initial
conditions of eq 3.3. All of the results presented here were
generated fora ) γ - 2, because the kinetics part of the problem
has a simple one-dimensional manifold:y2 ) y1

2 (eq 2.6 in ref
15). The coupled equations for the expansion coefficients are

where the following two integrals have been defined

It is possible to explicitly calculate these integrals, but this is
not presented anywhere in the paper. The results presented in
the rest of this section include the correct value for them.

Appendix E presents the solution to eqs 4.2a and 4.2b.
Equation E.1a has the solution fory1, which is derived directly
from the diffusion equation. The solution fory2 is presented in
eq E.1b. The solution ofy1 is repeated, along with a concise
form for y2

The time-dependent coefficients are

Figure 7. Contour plots presented to depict the attractiveness of the
two-dimensional manifolds. The designations on each plot list the cases.
These are generated for the same three values ofú1 as Figure 6. The
maximum contour is plotted with a thick solid line in the bottom two
panels, and the minimum value is shown as a dotted line in those panels.
In the middle panel the contours range from 2.0 to 5.0, and in the bottom
panel from 2.0 to 8.0. The top panel shows a single contour at a value
of 2.0 (maximum value is 2.78). The dashed lines depict the seams
between the cases. The designations “case 1”, “case 2”, and “case 3”
refer toR11, R12, andR22, respectively.
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The coefficients shown in these equations can be derived from
eq E.1.

B. One-Dimensional and Two-Dimensional Manifolds.
Equations E.2-E.4 present the information necessary for
defining and evaluating one-dimensional and two-dimensional
manifolds. Although the system is nonlinear and there are no
global eigenvalues, equations for the one-dimensional and two-
dimensional manifolds can be derived, with the results for the
two-dimensional manifolds described in Appendix G.3. They
depend on quantities that are obvious from the solution in
Appendix E and laid out explicitly in eqs E.4a-E.4c. As in
section III, there are several cases, which are ordered here in
these pairs

For case 1, the one-dimensional manifold is most easily
represented withy1â as an independent variable and points on
they1-distribution andy2-distribution defined via the manifold
as

Equation 4.7a has been presented in earlier sections (e.g., section
II). To derive eq 4.7b, start with the longest time behavior of
y1 andy2

Theτ values are defined in Appendix E. Equation 4.8a is used
to define

Figure 8. Several examples of the way distributions approach the one-dimensional manifolds. The labeling on the top of each panel lists the values
of theúi that are presented in the panel, and these can be compared to the contour plots in Figure 6. In turn, these can be compared to the relative
attractiveness evident in the plots. For example, in the panel on the top left, the manifold (solid line) is very attractive, and in the panel on the top
right it is not attractive. In this latter case, “trajectories” (dashed curves) go directly to equilibrium (the solid dots in all the panels).

Figure 9. An example of an attractive two-dimensional manifold. This
is for the same case as the panel on the top right of Figure 8. Note
how there is attraction to the plane (defined in eq G.3) but not to the
one-dimensional manifold (eq 3.6).
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which is substituted into eq 4.8b to derive eq 4.7b.
It is also straightforward to usey2 as the independent variable

for the one-dimensional manifold for case 1. In this coordinate
system, points for they1 andy2-distributions are

For case 2, the manifold follows from the examples in section
II and is represented as

C. Attraction to the One-Dimensional Manifold. It is
possible to study the approach to the one-dimensional and two-
dimensional manifolds presented in the previous subsection.
Because of the complexity of the terms to describe attraction
to the two-dimensional manifolds, this is left out of the
discussion, and only numerical examples are shown in the next
subsection.

As in section III, it is assumed that a hierarchy of manifolds
exists and that to a good approximation the final approach to
the one-dimensional manifold starts on a two-dimensional
manifold. There are thus four cases to consider, as outlined
above in eq 4.6. The coordinates used follow the form in section
III

where the subscript “ij ” refers to the four cases. Appendix F
describes theu-coordinates for all the cases.

D. Numerical Examples.To study the manifolds it is useful
again to define three variables, as was done in section IVD

For one-dimensional manifolds, the attractiveness can be written
with these parameters as

Figure 10 summarizes the values ofR for three values ofú1.
The convention for contours is the same as in Figures 6 and 7.
The lowest contour is at 2.0 and drawn with a dotted line, and
the highest contour is at 8.0 and plotted with a thick solid line.
The dashed lines in this plot delineate the four cases in eqs 4.6
and 4.14, which are labeled on the plots.

The top panel in Figure 10 demonstrates that the most
attractive one-dimensional manifolds for the case where diffu-
sion is relatively small compared to reaction occurs under “stiff”
reaction conditions, that is whenγ is large or small, because
maxima are nearú3 values of 1 or-1. Furthermore, the top
panel demonstrates that attractiveness is favored forD2 > D1

(ú2 < 0) whenγ is large and it is favored forD1 > D2 whenγ
is small.

The middle and bottom panels in Figure 10 indicate that once
again attractive manifolds are more likely under stiffer reaction
conditions, although this restriction is relaxed to a good degree
in the bottom panel, where diffusion is fast compared to reaction.
In that case theR ) 8.0 contour value on the left side of the
panel describes systems whose value ofγ is a minimum of 1.9.

Because they are numerous, the eight cases for the attractive-
ness of the two-dimensional manifolds are not explicitly written
here. Figure 11 summarizes their values for the same three
values ofú1 as in Figure 11. Once again, when diffusion is small
compared to reaction, the two-dimensional manifolds are not
very attractive as indicated in the top panel of Figure 11 (see
Figure 7). The two-dimensional manifolds become increasingly
more attractive as diffusion becomes larger than reaction.

Figure 11 can be compared to the analogous set of plots for
isomerization in Figure 7. These two plots give close to the
same picture. When diffusion is greater than reaction two-
dimensional manifolds are more attractive. There are a few
differences between the sets of plots. Some differences are due
to the definition ofú3 in the two cases. However, there is an
additional maximum in the top panel of Figure 11 compared to
Figure 7, and the maximum has moved to the middle panel of
Figure 11 compared to Figure 7, with a significantly higher
maximum (6.7 vs 5.3). The middle panel of Figure 11
demonstrates that the most attractive manifolds are when
reaction and diffusion are comparable and both rates of reaction
are equal as are the two diffusion constants.

Figure 12 summarizes the one-dimensional manifolds for the
systems studied in Figure 10. The top row shows a series of
manifolds generated at the same three values ofú1 as in Figure
10. They were chosen from systems that follow theR ) 8.0
contours in Figure 10, which are on the positiveú3 halves of
the panels, case 1 manifolds (eq 4.7). All of the plots in the top
row of Figure 12 arey1â/y2σ projections. The value ofxâ is fixed
at 0.25 andxσ at 0.75. The bottom row in Figure 12 shows a

b10 e-(1+π2D1/4)t )
y1â

sin(πxâ

2 )
(4.9)

y1σ ) κ(xâ) sin(xσ

2) (4.10a)

y2φ ) τ20(xφ)κ
2(xâ) + τ30(xφ)κ(xâ) (4.10b)

κ(xâ) )
-τ30(xâ) ( x[τ30(xâ)]

2 + 4y2âτ20(xâ)

2τ20(xâ)
(4.10c)

y1(x) ) y1
eq(x) (4.11a)

y2σ )
sin(πxσ

2 )
sin(πxâ

2 )
y2â (4.11b)

u1

u1
0

) (u2

u2
0)Rij

(4.12)

ú1 )
D1 + D2

γ + 1
(4.13a)

ú2 )
D1 - D2

γ + 1
-ú1 e ú2 e ú1 (4.13b)

ú3 ) γ - 1
γ + 1

-1 e ú3 e 1 (4.13c)

R11 )
4(1 - ú3) + 9π2(ú1 + ú2)

4(1 - ú3) + π2(ú1 + ú2)
(4.14a)

R12 )
4(1 + ú3) + π2(ú1 - ú2)

4(1 - ú3) + π2(ú1 + ú2)
(4.14b)

R21 )
4(1 + ú3) + 9π2(ú1 - ú2)

4(1 + ú3) + π2(ú1 - ú2)
(4.14c)

R22 )
4(1 - ú3) + π2(ú1 + ú2)

4(1 + ú3) + π2(ú1 - ú2)
(4.14d)
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different set of projections forú1 ) 0.1, the system from the
top left corner of Figure 12, and these are evident from the axes
labels. They include ay2â/y2σ projection on the bottom right.
As expected from eq 4.7, these manifolds are parabolic, and
due to this nonlinearity, they provide good test cases for the
methods in ref 25. Although the parabolic form of the manifolds
is obvious from eq 4.7, the details of the shape are not
transparent, due to the presence of the functionsτ20 andτ30 in
eq 4.7a, which are defined in Appendix E. A more complete

analysis of these functions reveals that although them) 0 terms
in eqs E.6a and E.7a are by far the largest, there are still
significant contributions fromm > 0.

Further information concerning manifolds is presented in
Figure 13. A set of distributions is plotted along one of the
manifolds forú1 ) 0.1 from Figure 12. The distribution for
species 1 is plotted as a solid line and the distribution for species
2 as a dashed line. The small parabola in each panel indicates
the location of the distribution along the manifold with a large
solid dot. Figure 13 is presented to emphasize that a point along
the manifold defines a distribution. It is truly a one-dimensional
manifold embedded in an infinite-dimensional function space.

The analysis of the manifolds for the nonlinear reaction-
diffusion model is completed in Figure 14. These panels show
how distributions relax to one of the manifolds presented in
Figure 12. The solid lines in the panels show the manifolds,
and the solid dot on each indicates the equilibrium value for
that projection. It can be observed that the dashed lines are rather
strongly attracted to the one-dimensional manifolds, indicative
of the relatively large value ofR (8.0) for all of the plots.

V. Conclusion

This paper has explored the approach to equilibrium for
reaction-diffusion equations on bounded domains under condi-
tions where there is a single equilibrium state. The study has
been restricted to one spatial dimension and one or two species.
The purpose of this paper has been to show how such systems
approach equilibrium along low-dimensional manifolds in the
infinite-dimensional function space. It has been shown that
attractive one-dimensional and two-dimensional manifolds exist
for these systems over a broad range of system parameters, but
the attractiveness is limited compared to that of manifolds for
the chemical-kinetic models without diffusion (for example, ref
15), as an investigation of the attractive properties has shown.

This paper sets the stage for the numerical algorithms
presented in the next paper.25 For the most part the systems
studied here have manifolds that can be represented analytically.
The analytical systems will provide important test cases for the
methods presented in ref 25 and include a system (section IV)
that is nonlinear. In the context of this paper they have provided
simple test cases to understand the ways that the manifolds can
be represented.

The only system studied here that required a numerical
analysis is the one in section IIB.2, and this led to a more
complete description of local linear dynamics presented in
Appendix B. This analysis will become important in the next
paper, where it is employed for generating accurate low-
dimensional manifolds. The reaction-diffusion equation in
section IIB.2 is also important, because it demonstrated that
nonlinearity could lead to manifolds that are more attractive
than corresponding ones for linear systems.

No attempt has been made here to connect this work to a
large body of literature on “inertial manifolds” for partial
differential equations.29,30The definition of “inertial manifold”
requires certain conditions, which have not been fully investi-
gated here. It appears that the main condition, exponential
attraction,38 is met for most of the systems. However, it is not
clear that the system of Figure 1, other systems in ref 25, and
the system of section IIB.2 have exponential attraction. These
systems have second-order kinetics, which is not exponential.
However, any difference between the manifolds studied here
and inertial manifolds appears to be one of strict mathematical
definition, because they are finite-dimensional manifolds em-

Figure 10. Plots analogous to the ones in Figure 6, with the
designations of the cases corresponding to eq 4.6.

Figure 11. Plots for the nonlinear system in section IV analogous to
those in Figure 7 for the isomerization reaction. The algorithm for
plotting contours is the same as in Figure 7. No seams are plotted, nor
are any designations for manifolds shown, as they were in Figure 7.
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bedded in an infinite-dimensional space. A more mathematical
investigation of the manifolds is outside the scope of the present
project.

The work described in this paper focuses on bound domains
and one particular type of boundary condition. It also limits
transport processes to diffusion only. Changing these conditions
will affect the results in this paper to varying degrees. All of
the results presented in this paper depend on a discrete, but
infinite, spectrum, so it seems likely that a purely continuous
spectrum for a system with infinite extent might eliminate the
manifolds studied here, although they might persist locally in
space. A change in boundary conditions will change the energy
spectra and thus the exponential factors in many of the equations
presented in this paper (for example, eq 2.5). This change would
thus affect the degree of attraction but should not affect the
overall picture presented in the paper. It seems likely that the
results presented here would be not change with the addition
of advection, as long as there is sufficient dissipation for the

system to equilibrate. Purely hyperbolic systems27 with no
diffusion almost certainly would not possess the types of
manifolds discussed in this paper.

Acknowledgment. This work was supported by the Office
of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences, U. S. Department of Energy,
under Contract No. W-31-109-ENG-38.

Appendix A: A Hierarchy of Manifolds for the Diffusion
Equation

As the diffusion equation relaxes to equilibrium, it proceeds
through a series of manifolds, the last few of which are described
in section IIA. This cascade can be understood by starting from
a manifold described by the set of all functions with finite extent
in the spectral space described in eq 2.5

Figure 12. Plots showing how one-dimensional manifolds (eq 4.10) change shape along the contourR ) 8.0 in Figure 10, for case 1. The projections
are defined in the axes labels. Each panel shows a compilation of the manifolds for the systems defined by theúi values andR. All panels have
results fora ) γ - 2, for reasons noted in the text (see the discussion of eq 4.1).

Figure 13. Plots demonstrating how distributions change along a one-dimensional manifold. The solid lines show the value ofy1, and the dashed
lines y2. The position on the manifold is indicated by the inset picture in each panel. This case is one of theú1 ) 0.1 examples in Figure 12. The
values of the parameters areγ ) 74.65,D1 ) 2.84, andD2 ) 4.73.

5248 J. Phys. Chem. A, Vol. 110, No. 16, 2006 Davis



This equation defines ann-dimensional manifold in the infinite-
dimensional system. To parametrize the manifold, consider the
set of coordinates

that are described by the following matrix-vector product

where the superscripts refer to the sizes of the vectors and the
square matrix, which has the following matrix elements

and thexk values refer toxâ, xσ, etc. The vectord is described
as

One can observe that all matrix elements ofAn-1 are contained
in An, in the same order as they appear there, as well as for the
vectors d and u. The elements of the vectordn are now
calculated by matrix inversion

A point on the manifold is then described (see eq A.1)

with eq A.7b showing how a point on the manifold is evaluated

in the original species coordinates, withxφ being the same as
xn in the matrix notation.

Equation A.7a is compared to then-dimensional manifold
for the system whose dimension isn + 1, which is described
by the matrixAn+1. When the dimension in eq A.6 is increased,
then-dimensional manifold for the (n + 1)-dimensional system
is described by (d)n

n+1 ) 0. Then-dimensional manifold is

To establish that the system is relaxing through of series of
manifolds, eqs A.7a and A.8a need to be compared term by
term as a function ofm, Starting with themth term in eq A.8b
and using the method of minors to find the inverse39

whereAmn is the algebraic complement ofA. The algebraic
complement can be written as the sum of a set of determinants

With some algebra and the definition of determinants, it can be
shown

which proves that eqs A.7a and A.8a are equal and that the
system cascades through of series of surfaces defined by

Figure 14. Panels showing how distributions are attracted to the one-dimensional manifolds. The manifolds are plotted as solid lines and are
manifolds for a single system chosen from Figure 12. The dashed lines show the results for a set of distributions. The top left panel and the panels
in the bottom row are all different projections of the same manifold and set of distributions.

y(x,t) ) y0 + ∑
m)0

n-1

am e-(m+1/2)2π2Dt sin(m +
1

2)πx

(A.1)

u0 ) y(xâ) - y0, u1 ) y(xσ) - y0, ... (A.2)

un ) Andn (A.3)
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∑
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truncated spectral decompositions. Because “n” in eqs A.7a and
A.8 is arbitrary, this demonstrates that there is a cascade of
manifolds of decreasing dimension as the system relaxes to
equilibrium.

It is clear from the definition of the manifold derived from
eq A.8a that the attraction is exponential in time. In general,
the attractiveness of the manifold is more difficult to define in
phase space but is straightforward in the coordinateu values.
Here it is assumed that the approach to ann-dimensional
manifold starts with the (n + 1)-dimensional manifold, and with
a little algebra the following form for the attraction is derived

which is a result described section IIA. The initial values, un0,
are derived fromdn0 in eq A.6.

Appendix B: Dynamical-Systems Analysis

Consider the system of nonlinear reaction-diffusion equations

The index “i” refers here and in subsequent equations to an
individual species. The system of equations in eq B.1 is solved
once again with a semidiscrete method31 as in section IIB.2.
The system is written as a set of ordinary differential equations

The second index refers to a point on the grid. Once again it is
assumed that the grid is evenly spaced. Forn species onm grid
points there arer ) n × m coupled ordinary differential
equations. To ensure accuracy, it is advisable to increase the
number of grid points until convergence is reached.

The linearization and subsequent stability analysis in section
IIB.2 can be extended to the system in eq B.2. For theith
species, linearization gives

J describes localized linear dynamics for the function space. It
is an infinite-dimensional matrix, which is evaluated here on a
grid of points, to make it finite-dimensional.J is defined in the
following sub-block manner

The index “k” again refers to a grid point, and ‘i” labels the
species. Forn species defined onm grid points, each sub-block
Jik has dimensionm × m, and the total dimension ofJ is r ×
r, wherer ) nm. WhenJ is defined in this manner it is made
clear that an eigenvector of the finite-dimensional version of
this matrix consists ofn sections referring to then species, and
each section has a lengthm. It is understood that to study the
eigenvalues and eigenvectors ofJ it is necessary to numerically
converge the eigenvectors of interest. From experience, the
eigenvalues and eigenvectors with the lowest magnitude eigen-
values converge first. Because the eigenvalues are all negative
in the calculations presented here, the first nonzero eigenvalue
to converge is the “least negative”.

To make the discussion more concrete, consider the following
system

The semidiscrete method gives a grid ofm points for each
species and a system of ordinary differential equations

where “k” refers to thekth grid point out ofm and it is again
assumed that the grid is evenly spaced. In eqs B.6a and B.6b
the second derivative has been replaced by a finite-difference
approximation. These equations are solved with an integrator
for ordinary differential equations, with LSODE used here.40

The boundary conditions are those in section IIB and these
conditions once again define the points along the boundary as
well as the finite-difference approximation for the second
derivatives of the points adjacent to the boundary.

The Jacobian matrix for the system is written in the following
form

The matrix elements in the blocks for points away from the
boundary are

un

un0
) ( un+1

un+10
)[(n+1)+1/2]2/(n+1/2)2

(A.12)

∂yi
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where they values are equilibrium values. Points adjacent to
the boundary have different matrix elements.

The converged eigenvectors of eq B.8 define low-dimen-
sional, attractive manifolds near the equilibrium distribution,
as they do for ordinary differential equations.22 The eigenvector
of the least negative eigenvalue defines a one-dimensional
manifold. The subspace of this eigenvector and the eigenvector
whose eigenvalue is the next lowest defines a two-dimensional
manifold, etc. Near equilibrium, they define a hierarchy of
relaxation times.

Appendix C: Isomerization with Diffusion

Equations 3.4a and 3.4b define a series of 2× 2 matrix-
vector products

with Zm andbm in eq C.1b defined in eq C.1a. The matrixZ is
diagonalized in the same manner asJ in eq 2.30, and this leads
to the following for the time development of the distributions

whereR andL refer again to left and right eigenvectors, which
are labeled by “m”. The eigenvaluesλ1m and λ2m result from
the diagonalization ofZm and are

Appendix D: A Hierarchy of Manifolds for Linear
Reaction-Diffusion Systems

The relaxation of the two-species linear reaction-diffusion
system of section IIIA (eqs 3.1a and 3.1b) is more complicated

than the diffusion equation of section IIA and Appendix A, and
the analysis here is more limited than that in Appendix A. In
analogy to eq A.1, sets of functions described by truncated
expansions are studied. These functions are relaxed versions of
the full time dependence of eqs C.2a and C.2b and are written
as

Equations D.1a and D.1b define an (n + 1)-dimensional
manifold. The limit “n” is defined from the eigenvalue spectra
denoted by the eigenvaluesλ1m andλ2m

where it is assumed that in the physical situations studied (see
section IIIB), all of theλ values are negative. For the situation
outlined in eq D.2, then-dimensional manifold is defined from
the following truncation

The (n + 1)-dimensional manifold of eqs D.1a and D.1b can
be defined in many different coordinate systems in the space
of species. Consider the following definitions

As in Appendix A, define a matrixA

The u values are described by the following matrix-vector
product

Jkk
22 ) -4k2y2k -

2D2

∆x2
Jk,k+1

11 ) Jk,k-1
11 )

D2
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Jkm
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and thed values by

To calculate the value ofy1 andy2 on the (n + 1)-dimensional
manifold, the following must be evaluated

The elements ofB are

The manifold can also be defined in a representation where
the independent coordinates arey2 values or in a mixture ofy1

values andy2 values, and in different parts of the paper this is
what is done.

The manifold defined in eqs D.8a and D.8b relaxes. The new
manifold reached via this relaxation is defined by

A similar analysis to what was done in Appendix A.1
demonstrates that eq D.10 defines a manifold that is the same
as that generated from eqs D.3a and D.3b. The relaxation of
the manifolds occurs, and the methodology of Appendix A can
be applied

Appendix E: Nonlinear Reaction Diffusion System

Equations 4.2a and 4.2b can be solved exactly

These equations relax asymptotically. To study one- and two-
dimensional manifolds it is necessary to study the first two terms
of the expansion in eq E.1a and the first two terms in the
summations of eq E.1b. This gives the following asymptotic
expressions for the two species

The expansion fory2 at long time consists of three different
spatio-temporal factors

The termsτ1 τ2, andτ3 are defined as

The quantities necessary to defineτ1 are
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2 ) e-(γ+9π2D2/4)t

(E.4a)

τ2(x,t) ) b10
2 τ20(x) e-(2+π2D1/2)t +

2b10b11τ21(x) e-(2+5π2D1/2)t +

b11
2 τ22(x) e-(2+9π2D1/2)t (E.4b)

τ3(x,t) ) b10τ30(x) e-(1+π2D1/4)t + b11τ31(x) e-(1+9π2D1/4)t

(E.4c)

e20 ) b20 -

∑
k

∑
n

ab1kb1nrkn
0

(γ - 2) +
π2D2

4
- [(k +

1

2)2

+ (n +
1

2)2]π2D1

-

∑
j

2b1jasj
0

(γ - 1) +
π2D2

4
- (j +

1

2)2

π2D1

(E.5a)
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The functions necessary to defineτ2 are The functions necessary

to defineτ3 are

The terms in eqs E.3-E.7 are combined to define the one-
dimensional and two-dimensional manifolds in section IV. The
coefficients for the quadratic equation in eq G.13c are

Appendix F: Attraction to One-Dimensional Manifolds
for the Nonlinear Reaction-Diffusion System

In what follows, the coordinates describe a path starting with
the projection enumerated in eqs G.13-G.15. The coordinates
andR values are:

Case 1_1

with theµ values defined in eq E.8 and terms such asµ2
0 being

obvious generalizations. They are formed by replacing terms
such asy1â with y1â

0. It is also straightforward, though tedious,
to demonstrate the expected result thatu1/u1

0 ) 0 places the
system on the one-dimensional manifold defined in eq 4.7. For
the other cases, attraction takes the following forms:

Case 1_2

Case 2_1

e21 ) b21 -

∑
k

∑
n

ab1kb1nrkn
1

(γ - 2) +
9π2D2

4
- [(k +

1

2)2

+ (n +
1

2)2]π2D1

-

∑
j

2b1jasj
1

(γ - 1) +
9π2D2

4
- (j +

1

2)2

π2D1

(E.5b)

τ20(x) ) ∑
m

ar00
m sin[(m +

1

2)πx]
(γ - 2) + (m +

1

2)2

π2D2 -
π2D1

2
(E.6a)

τ21(x) ) ∑
m

ar01
m sin[(m +

1

2)πx]
(γ - 2) + (m +

1

2)2

π2D2 -
5π2D1

2
(E.6b)

τ22(x) ) ∑
m

ar11
m sin[(m +

1

2)πx]
(γ - 2) + (m +

1

2)2

π2D2 -
9π2D1

2
(E.6c)

τ30(x) ) ∑
m

2as0
msin[(m +

1

2)πx]
(γ - 1) + (m +

1

2)2

π2D2 -
π2D1

4
(E.7a)

τ31(x) ) ∑
m

2as1
msin[(m +

1

2)πx]
(γ - 1) + (m +

1

2)2

π2D2 -
9π2D1

4
(E.7b)

µ1 ) τ20(xσ) sin2(3πxâ

2 ) - 2τ21(xσ) sin(πxâ

2 ) sin(3πxâ

2 ) +

τ22(xσ) sin2(πxâ

2 ) (E.8a)

µ2 ) 2τ21(xσ)y1â sin(3πxâ

2 ) + τ30(xσ) sin2(3πxâ

2 ) - τ31

(xσ) sin(πxâ

2 ) sin(3πxâ

2 ) - 2τ22(xσ)y1â sin(πxâ

2 ) (E.8b)

µ3 )

τ31(xσ)y1â sin(3πxâ

2 ) + τ22(xσ)y1â
2 - y2σ sin(3πxâ

2 ) (E.8c)

u1

u1
0

)
2µ1y1â + [µ2 - xµ2

2 - 4µ1µ3] sin(πx
2 )

2µ1
0y1â

0 + [µ2
0 - x(µ2

0)2 - 4µ1
0µ3

0] sin(πx
2 )

(F.1a)

u2

u2
0

)
-µ2 ( xµ2

2 - 4µ1µ3

-µ2
0 ( x(µ2

0)2 - 4µ1
0µ3

0
(F.1b)

R11 )
4 + 9π2D1

4 + π2D1

(F.1c)

u1

u1
0

)
y2σ sin2(πxâ

2 ) - (y1â)
2τ20(xσ) - y1âτ30(xσ) sin(πxâ

2 )
y2σ sin2(πxâ

2 ) - (y1â
0 )2τ20(xσ) - (y1â

0 )τ30(xσ) sin(πxâ

2 )
(F.2a)

u2

u2
0

)
y1â

y1â
0

(F.2b)

R12 )
4γ + π2D2

4 + π2D1

(F.2c)

u1

u1
0

)
y2σ sin(πxâ

2 ) - y1â sin (πxσ

2 )
y2σ

0 sin(πxâ

2 ) - y1â
0 sin(πxσ

2 )
(F.3a)

u2

u2
0

)
y2σ sin(3πxâ

2 ) - y1â sin(3πxσ

2 )
y2σ

0 sin(3πxâ

2 ) - y1â
0 sin(3πxσ

2 )
(F.3b)
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Case 2_2

Appendix G: Two-Dimensional Manifolds

This appendix summarizes information for the two-dimen-
sional manifolds studied in section IIB.1, section III, and section
IV.

1. Irreversible Unimolecular Reaction. For the system in
section IIB.2 it is possible to define higher-dimensional
manifolds, because of the ordering of the eigenvalues. A two-
dimensional manifold is a plane and is written as

where the notation of eq 2.19 has been extended in an obvious
way to a third point atxφ.

2. Isomerization with Diffusion. There are two types of two-
dimensional manifolds for this system depending on the ordering
of the eigenvalues. The first two eigenvalues are either

or

with the designation of the eigenvalues described in Appendix
C. Because all eigenvalues are negative, these are the largest
two, or “least negative”. The calculation of the manifolds follows
from section II. There are a number of ways to project the two-
dimensional manifolds for a system of two species. The
independent coordinates used here will bey1â andy2σ. For case
1, with this projection, the two-dimensional manifold defines a
point alongy1 as

It defines a point along the distribution ofy2 as

where the notation of eqs 3.8a and 3.8b is used and extended.
Because of the linearity of the system, the two-dimensional
manifolds are planes.

Through the use of the same projection as in eqs G.3 and
G.4, a two-dimensional manifold for case 2 defines a point along
the y1-distribution as

It defines a point along they2-distributions as

To describe the attraction to a two-dimensional manifold a
further description of the eigenvalue spectrum is necessary. First,
expand the list of cases in the following manner

and

Only one case is described here. Through the use of the
formalism outlined here and in Appendix D, all projections of
all cases are straightforward. There are three coordinates that
describe the approach to a two-dimensional manifold and the
subsequent motion on it, if it is assumed that the system passes
through a three-dimensional manifold as it relaxes to the two-
dimensional manifold. The behaviors of these coordinates in
phase space are once again straightforward

R21 )
4γ + 9π2D2

4γ + π2D2

(F.3c)

u1

u1
0

)
y1â

y1â
0

(F.4a)

u2

u2
0

)

y2σ sin2(πxâ

2 ) - (y1â)
2τ20(xσ) - y1âτ30(xσ) sin(πxâ

2 )
y2σ sin2(πxâ

2 ) - (y1â
0 )2τ20(xσ) - (y1â

0 )τ30(xσ) sin(πxâ

2 )
(F.4b)

R22 )
4 + π2D1

4γ + π2D2

(F.4c)

yφ ) 1
ø(xσ,xâ)

[ø(xσ,xφ)yâ + ø(xâ,xφ)yσ] (G.1a)

ø(z1,z2) ) sin(πz1

2 ) sin(3πz2

2 ) - sin(πz2

2 ) sin(3πz1

2 ) (G.1b)

case 1 λ10 > λ11 (G.2a)

case 2 λ10> λ20 (G.2b)

y1φ ) g11y1â + g12y2σ (G.3a)

g11 ) 1
q[R11

0 R21
1 sin(3πxσ

2 ) sin(πxφ

2 ) -

R11
1 R21

0 sin(πxσ

2 ) sin(3πxφ

2 )] (G.3b)

g12 )

R11
0 R11

1

q [sin(πxâ

2 ) sin(3πxφ

2 ) - sin(3πxâ

2 ) sin(πxφ

2 )] (G.3c)

q ) R21
1 R11

0 sin(πxâ

2 ) sin(3πxσ

2 ) -

R21
0 R11

1 sin(πxσ

2 ) sin(3πxâ

2 ) (G.3d)

y2φ ) g21y1â + g22y2σ (G.4a)

g21 )
R21

0 R21
1

q [sin(3πxσ

2 ) sin(πxφ

2 ) - sin(πxσ

2 ) sin(3πxφ

2 )]
(G.4b)

g22 ) 1
q[R21

1 R11
0 sin(πxâ

2 ) sin(3πxφ

2 ) -

R21
0 R11

1 sin(3πxâ

2 ) sin(πxφ

2 )] (G.4c)

y1φ )
sin(πxφ

2 )
sin(πxâ

2 )
y1â (G.5)

y2φ )
sin(πxφ

2 )
sin(πxσ

2 )
y2σ (G.6)

case 1_1 λ10> λ11> λ12 (G.7a)

case 1_2 λ10> λ11> λ20 (G.7b)

case 2_1 λ10> λ20 > λ11 (G.7c)
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where theR values are

Theu-coordinates can be written in the manner of Appendix
D. Theu1-coordinate is

The matrix elements are

Equations G.11a-G.11c demonstrate that as the system
relaxes andu1 f 0, it relaxes to the two-dimensional manifold
shown in eqs G.3a-G.3c, as expected from Appendix D.

In terms of the variablesú1, ú2, andú3, the attractiveness of
the two-dimensional manifolds has three possible values

3. Nonlinear Reaction-Diffusion System.There are numer-
ous ways to represent the two-dimensional manifolds for the
four cases in eq 4.6. Only one set of independent variables is
shown for each case. It is not difficult to derive other projections.
Once again, points on both distributions can be defined in terms

of the two-dimensional manifolds. The bases for the representa-
tions of the manifolds are in eqs E.3-E.7 of Appendix E.
Without derivation, the representations are enumerated:

Case 1_1

The forms ofµ1, µ2, andµ3 are presented in Appendix E, eq
E.8. Another case is:

Case 2_1

This representation is merely the same as the one in section II,
with the same notation for the transformation functionø from
eq 2.1. The final two cases are:

Cases 1_2 and 2_2
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