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The approach to equilibrium for systems of reactiaiffusion equations on bounded domains is studied
geometrically. It is shown that equilibrium is approached via low-dimensional manifolds in the infinite-
dimensional function space for these dissipative, parabolic systems. The fundamental aspects of this process
are mapped out in some detail for single species cases and for two-species cases where there is an exact
solution. It is shown how the manifolds reduce the dimensionality of the system from infinite dimensions to
only a few dimensions.

I. Introduction proaches from a dynamical-systems perspective. This paper is
. . . . thefirstin a series that extends the dynamical-systems approach
. The accurate modeling of_reactlve flows requires the descrip- to the study of nonlinear partial differential equations involving
tion of thg interplay of chemistry qnd trgnspbmenerally, the . the interplay between reaction and transport, with the goal of
range of time sca]es for the chemical-kinetic processes deSC”b'investigating their reduction within a geometric framework. The
Ing the chen_*ustry IS much larger than that for_transport processes,purpose of these papers is to understand the interplay between
making th? |_nclu3|on of complex chemical klne_tlcs a challenge. transport and chemistry and to try to understand the types of
However, it is common for much of the chemistry 1o relax on reductions that are possible, particularly when there is no longer

time SC”aleS sh(:rtgrththtan the tratns]?or:j t'mﬁ Sﬁale.s’ lagd It 1S5 clear separation between kinetics and transport or at time scales
generally expected that some sort of reduced chemical descrip— long that slow diffusion is important.

tion can be made so that the modeling of the full process Th | earli that h tudied the interpl
becomes more tractable. A great deal of work has focused on ere are several earier papers fhat have studie ezgnzfrp ay
of reaction and transport within a geometric framewirké:23.

this sort of reduction, and it is reviewed in several plgoebgere Like th ¢ th h ¢ the interol
there are also reviews of other types of reduction techniques. Ike Ihese references, the current paper focuses on the interpiay
between kinetics and diffusion, concentrating on systems of

Reduction techniques that rely on reduced chemical descriptionsd. inati ondiffusi " that relax t inal
can often be viewed as generalizations of the well-known steady- ISSipative reactiondiiiusion equations that rélax to a singie

state approximatiof.In addition, there is a large amount of equilibrium distribution for the chemical species. From earlier
. , 2 PR ;
literature on the reduction via perturbation techniques in work,™ it is expected that diffusion is more important than

engineering and applied mathematics that are relevant to thegdvectllog_flfn mat\klng l:eduied chemlctald_dr(ejs?]nptl(ins 'nV%“d'
reduction of chemical kinetics and modelifg. everal diiferent smafl systems are studied here 10 provide a
o . .., foundation for what is presented in the paper that follows this
One of the modern approaches to kinetic reduction that builds _ ~ ;o -
L . .~ ~one?° This paper and the follow-up paper concentrate on the
on the steady-state approximation recognizes the geortetric

character of the approximation. The steady-state approximationfmal stages _of reéaxatlon to equilibrium, while later ones focus
on shorter time&¢

is replaced by more accurate representations relying on a better : L .
To make the discussion in this Introduction more concrete, a

description of the dynamics of the chemical kinetics. Important . S
work by Fraser and Roussel? Lam and Goussit¥® and Maas result is presented for the system studied in ref 25, the
and Pop&-12provides the foundations for this approach as well combustion of ozone under isothermal conditions and under the

as important insights and techniques. These references havdnfluence of diffusion. There are three species that participate:
provided the impetus for a number of studies that have O+ Oz and Q. The top two panels in Figure 1 show results for
followed513-21 The methods presented in these references rely Oz Figure 1a shows the concentration profile ofetwo times.

on the fact that the approach to equilibrium occurs along lower- | € thinner dotted line is at= 0, and the thicker dotted line

dimensional surfaces in the phase space of the sptcies is att = 1 ms. Figure 1b shows results for a different initial
called low-dimensional manifolds.

distribution at the same two times, with the thin dashed line
The methods of reduction that rely on low-dimensional

showingt = 0 and the thicker dashed line= 1 ms. The
manifolds use techniques borrowed from the dynamical-systemsparameters describing the system are listed in the figure caption.
literature?? Reference 15 has detailed analyses of these ap-

The plots in Figure 1b highlight two pairs of points. Points at
x = 0.49 are plotted as an open square onttie0 curve and

T Part of the special issue “John C. Light Festschrift”. a filled square on the.: 1 ms curve. Points at = 0.77 .are

* Author to whom correspondence should be addressed. E-mail: Plotted as an open diamond on the= 0 curve and a filled
davis@tcg.anl.gov. diamond on thé = 1 ms curve.

10.1021/jp055592s CCC: $33.50 © 2006 American Chemical Society
Published on Web 03/11/2006



5236 J. Phys. Chem. A, Vol. 110, No. 16, 2006 Davis

5¢-05 A———1—— on the way to equilibrium. This is a standard result in the study
46-05 |- 4 of low-dimensional manifolds for systems of ordinary dif-
— 3005 ferential equations approaching equilibrium. The presence of
) 26-05 spatial coordinates and the effects of diffusion may cause
16:05 ] modifications to the simplest picture of this process, as refs 18,
L 23, and 24 indicate, but does not represent a reduction of the
0 02 04 06 08 1 system to finite dimensions, because even a single partial
X differential equation defines an infinite-dimensional dynamical
56-05 P — - system.
4e-05 . 5,,..:-'-‘?;*""‘1 What this paper is focused on is the reduction indicated by
— 305 | eeeem T J the right-hand set of curves in Figure 1c. These curves were
S 05t - generated by plotting the value of the concentration £¥€sus
1e-05 k i the concentration of O atifferentspatial pointsx = 0.29 for
o O and x = 0.77 for Q. The figure indicates that this
representation also approaches a single curve (thick line),
although different than the one on the left of the panel. The
Se-05 dashed and dotted curves on the right correspond to the same
4e-05 pair of initial distributions as on the left set of Figure 1c and
= 3e05 the distributions in Figures la and 1lb. The solid and open
S 205 diamonds are the points plotted in Figure 1b with the same
1¢-05 symbols. The solid dot is the coordinate pair formed from the
L L L equilibrium value of O ak = 0.29 and Q at x = 0.77. The
0 5e-08 1e-07 1.5¢-07 2¢-07 solid triangle on the right set of curves is the coordinate pair at
[0] t=4.6 ms.
Figure 1. Series of plots for an ozone reactiediffusion system. The set of curves on the right in Figure 1c indicates that the

Temperature is fixed at 1000 K, with the same kinetic parameters as system of three partial differential equations is reduced beyond
in refs 18 and 25, and all diffusion constants are fixed at 18@@ures what is implied by the left set of curves. At a time between 1.0

la and 1b show distribution functions for, @t two different times d46 th t f tial diff tial i has b
propagated from two different initial distributions. In Figure 1c the 2Nd 4.0 MSNe System of parual differential equations nas been

concentrations of ©and O are plotted in phase space. For the set of feduced to a one-dimensional system. At that point it can be
curves on the left O and £are plotted ak = 0.49, and for the right described by a single ordinary differential equation and a set of
set O is plotted at 0.29 and,@t 0.77. The spatial extent of the problem  functional relationships between the value of O at a single point
in these scaled units is 0.0 to 1.0. See text for further details. and the values of all species (Oz,@nd Q) at all other spatial
points. The time is set between 1.0 and 4.6 ms based on the
fact that the closed diamond on the right and the closed square
on the left are both plotted at the same time. The closed square
lies on the manifold that describes the reduction of the number
of partial differential equations, and the closed diamond on the
right does not lie on the manifold describing the reduction to
one ordinary differential equation. The solid triangle on the right

In Figure 1c results from ozone combustion are plotted in a
different manner. There are two sets of curves plotted in Figure
1c. The set of curves on the left of Figure 1c follow the evolution
of the distributions from the top two panels by plotting the
concentration of @versus the concentration of O at the spatial
point x = 0.49 for both species (the range is from 0.0 to 1.0).
The results for thes_e d|s_,tr|but|ons are plotted with the same line does indicate that such a final reduction occurs by 4.6 ms.
types as they are in Figures 1la and 1b. The symbols on the . )
dashed curve match the symbols on the distributions plotted in The purpose of this paper and the follow-up pépés to
Figure 1b. The solid dot shows the equilibrium value of the O Study the process pictured in Figure 1c in detail. The present
and O distributions at = 0.49. paper will describe several fundamental aspects of this process,

In addition to results for the distributions in the top two relying mostly on systems for which there is an analytical
panels, there are four other curves on the left side of Figure 1¢, solution. Reference 25 will use the systems studied in this paper
Three of these are plotted with thin solid lines and a fourth {0 dévelop methods to extend the analysis here to systems such
with a thicker solid line. The three thin-line curves result from S the 0zone example in Figure 1.
the time development of three additional initial distributions. It~ The outline of this paper is as follows. Section Il introduces
can be observed in the left part of Figure 1c that all five sets of the notion of an infinite-dimensional phase space for a single
initial distributions asymptotically approach the thicker solid diffusion equation. It then shows that the reduction to finite
line. This latter curve is what is referred to as a “low- dimensions is a straightforward consequence of dissipation. It
dimensional manifold”. When a system reaches such a manifold, then demonstrates how this notion can be extended analytically
there is a reduction in the number of partial differential equations to an isolated, irreversible unimolecular reaction in the presence
that need to be followed. The curve on the left of Figure 1c ©of diffusion and numerically to a nonlinear problem, an
demonstrates that afterl ms the concentration of Qs a irreversible association reaction. For this latter case, it is natural
function of O. Plots of @ versus O also show a functional to study local, linearized dynamics that is introduced for that
relationship. On the low-dimensional manifold the system of Single reactior-diffusion equation and extended to systems of
partial differential equations has been reduced from three to one,nonlinear reactiondiffusion equations in Appendix B.

with the behavior of the other two species,@nd Q) described Sections Il and IV extend the analysis of section Il to two
by the functional relationships defined by the low-dimensional systems of reactiondiffusion equations that have analytic
manifold. solutions, one of which is nonlinear (section IV). These sections

The curves on the left in Figure 1c demonstrate that all initial show the conditions under which attractive one-dimensional and
distributions relax to equilibrium in a similar manner, first two-dimensional manifolds are relevant for relaxation to equi-
approaching a one-dimensional curve in the space of speciedibrium. The systems studied in these sections are meant to
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provide test cases for the methods proposed in ref 25. Sectiondiffusion equation, a specification of spatial location is necessary
V presents additional discussions and a conclusion. There areand the designation
seven appendices that provide additional technical details.

® 1
Il. The Diffusion Equation, Reaction—Diffusion Y(Xs.t) = Yo + Z) a, e (T sin(n + —)ﬂxﬁ (2.6)
Equations, and Dynamical-Systems Analysis n= 2
A. The Diffusion Equation, Infinite-Dimensional Phase refers to the evaluation of the distributigix,t) at the spatial
Space, and Low-Dimensional ManifoldsAn integral part of point xg. Here and in the rest of the paper displacemeny of
the description of reactive flowss the notion of diffusion, from equilibrium atxg (y(xs.t) — yo) will be referred to ag,
which is described in one spatial dimension (within a hydro- or more generallyyis, denoting thekth coordinate of an
dynamic formulation) & n-dimensional system. A two-dimensional projection of the
infinite-dimensional phase space will be designated as a
ay _ D iy 2.1) “yplys" projection. Such projections will be used to study the
ot G ' functional relationship betweegs and y, during the time

development of the distributioy(x,t), as indicated in Figure 1.
which assumes a constant diffusivity, typically referred to Although the phase space is infinite-dimensional, the diffusion
as the diffusion constant. In the context of reactive flows, eq equation is dissipative, as indicated in eq 2.5. As time increases,
2.1 is posed as an initial boundary probléhithe boundary fewer terms are needed to describe the time development of

conditions used here are because the higher terms become very small and the system
effectively becomes a finite-dimensional one. It eventually
y(x=0)=Yy, 8—y(x =1)=0 (2.2) relaxes to an equilibrium distribution= yo, which is described
X by an infinite set of equal coordinatgs = yo and is a single

point in the infinite-dimensional phase space. A single point in
the phase space is a zero-dimensional manifold. All of the other
cases studied here will have equilibrium distributions that are
not spatially constant. These also are single points in the infinite-
dimensional phase space but with a set of poypts y(xs).
Appendix A has a detailed description of the relaxation of

y(x,0) =y, + Z)ansm(nJF})ﬂX (2.3) the diffusion equation through phase space. A simplified
n= 2

that are analogous to typical boundary conditions studied in one-
dimensional flame calculatior?§ where the transport is more
complicated because it includes advection and typically has
nonconstant diffusivity. Initial conditions are specified as

description of this relaxation is presented in this subsection. The
final approach to equilibrium for the diffusion equation is

whereyy is the equilibrium distribution of, which solves described by
> G
0= Dgizl (2.4) Y(xt) = Yo+ agsin"e oua (2.7)
X

and has the correct boundary conditions. It is a constant in this Which is @ line in the infinite-dimensional phase space. To define
case. The sine functions in eq 2.3 are eigenvectors of the Projection onto the phase space of the species, time and the
Laplacian on the right-hand side of eq 2.1. initial condition are eliminated. First rewrite eq 2.7 and define

As indicated in eq 2.2, for convenience the spatial domain is It @t & pointx;
always chosen to be the unit interval in this paper. ChanBing

in eq 2.1 is equivalent to changing the spatial domain. For aoe—nthM:y(X/f’t) Y% (2.8)
example, changing the length of the spatial domain by a factor TTXg
r is equivalent to changing the diffusion constant bg2.1/ sin—~

The solution of eq 2.1 with boundary conditions in eq 2.2,
initial conditions in eq 2.3, and an equilibrium distribution  Then a projection of the line onto thgly, plane is defined
satisfying eq 2.4 is

yﬂ . JTXU
- 1/2P2%D 1 Yo = X Sm? (2.92)
yox) =y, + y a,e ™ POt sin n + = |x (2.5) sin—2"
= 2 2
Because it takes an infinite number of terms to describe the Ys=YX) = Yo Yo=Y(X) ~ Yo (2.9b)

time development of a distribution, partial differential equations
are sometimes referred to as infinite-dimensional dynamical The relaxation outlined above is generic for dissipative
systemg2.30 systems. What makes the notion of a low-dimensional manifold
Homogeneous chemical kinetics is described by ordinary useful is a separation of time scales, characterized here by the
differential equations, and a number of studies of low- attractiveness of a particular manifold. In general, for nonlinear
dimensional manifolds in chemical kinetics have studied them systems, it is difficult to judge such a quantity except in a local
in the context of the phase space of the chemical spediés!®>18 linear sense, and often a visual inspection of the phase plane is
In analogy to that work, the present paper studies reaction all that is done. However, in many of the cases studied here,
diffusion equations in a phase space, as indicated already inboth linear and nonlinear, good global estimates of the at-
Figure 1, and this distinguishes the present paper from earliertractiveness can be obtained. The basis for this is presented here
work on manifolds for partial differential equations describing for the diffusion equation and implemented in several examples
reaction and diffusioA82324To study the phase space of the in the rest of the paper. Consider the next term in the expansion
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of eq 2.7 and evaluate both terms at two different points, written o0 ) 1
in matrix-vector notation yixt) =y X + § a, e HrL/2raDlt sin(n + —)nx
&
, (nxﬁ) . (Snxﬁ) o (2.15)
(yﬂ(t) - yo) _ P2/ M2 (ao e’ ) for the initial distribution
) — X, 37X, —972DU/4
Yoll) = Yo sin(T) sin(—2 ) a e © 1
(2.10) yx0) =y + ) a, Si”(” + E)m( (2.16)
&

as well as the initial conditions projected onto the same plane o o
The equilibrium distribution is

(yﬁ(t =0) -y, ) _ Si”(ﬂ?)(ﬁ) Si”(?)

y,t=0) =y, | | . (nxg) _ (3nxa)
sin{——] sin
2 2 2.11
(2.11) The results in egs 2.322.17 can be compared to eq 2.5. The
Inversion of the matrix in egs 2.10 and 2.11 defines the two differences between the reactive and nonreactive cases are

_ Yo VKD(x—1) | . —~/KD(x-1
(ao) v*4(x) == m[e +e Ul
a eV " +e 2.17)

exponentials the nontrivial equilibrium state for the reactive case and a change
in the time dependence in the exponential describing the

. [37%g _[37x, unimolecular.decay. o
o Y, sm(—2 ) — V¥ sm( 5 ) y The behavior observed in Figure 1 can be understood for the

=— current reactiorrdiffusion equation by noting that eq 2.15

(3”le _ (3”)(0) Yo indicates an approach to equilibrium whose final stage is one-
Y0 Sin Yo SIN . .
2 2 dimensional and has the form
(2.12a)
X X _ —k+n2pialt o | 7B
. (_ﬁ o (_g) y(Xs.t) = Y*(xs) + 8 € sinf—-| (2.18)
Yy, sin Y Sin 2
o 9TDU4 _ 2 2/ _u
7TXg [ U where the functiory is evaluated at the poing in the unit
Yoo SIN\T7) = Ypo SIN\ 5~ interval. Time can be eliminated, and the valug/at a second
(2.12b) point, x,, can be found as in section IIA and Appendix A
with the numerator of eq 2.12b describing the manifold from 7,
eq 2.9a. These equations use the definitions from eq 2.9b, with sin >
the obvious generalization to defitygy andyeo. Through the Yo = T\ (2.19a)
use of eqs 2.12a and 2.12b the behavior in phase space is sin(—ﬁ)
observed to have the following form
u_ (ﬁ)o‘ (2.13a) Y = Y(Xg) — yea(xﬁ) (2.19b)
U \%
Yo = Y(%,) = Y*{x,) (2.19¢)
oa=9 (2.13b)

) ~which again is a projection of a line from the infinite-
(u=0), and eq 2.13b describes the rate of the aftraction. has heen generalized to include a nonconstant equilibrium
Manifolds whose values af are too low will not be considered  gistribution. Equation 2.19 demonstrates that the manifold
very attractive and not useful for dimension reduction. depends on the relative sizes kfand D only through the

The goal of the rest of this paper is to study finite-dimensional equilibrium distribution (eq 2.17).
reaction-diffusion equations, both linear and nonlinear, and for gjstributions and how they approach the manifold in eq 2.19
systems of reactiondiffusion equations. are shown in Figure 2 for different initial distributions flor=

B. Reaction—Diffusion Equations. Two examples of one- v — 1, x; = 0.25, andx, = 0.65. The top panel shows results
species cases are used as a further introduction to finite-for p = 0.1 and the bottom panel f@ = 10.0. The solid line
dimensional manifolds. _ _ shows the projection onto the plane of the linear, one-

1. Irreversible Unimolecular Reactiorihe spatio-temporal  dimensional manifold. The dashed curves show four “trajecto-
behavior of a species that diffuses and undergoes an irreversiblgjes”, which are the time development of two points along the

unimolecular decay is written as four different distributions defined in eq 2.16. Comparison of
the two panels indicates that Bsgets larger the attraction to
ay _ —ky+ D iy (2.14) the manifold gets stronger. In the top panel the dashed lines
at e ' show that trajectories go almost directly to the equilibrium point,

drawn as a solid dot. In the bottom panel the dashed curves are
The spatial domain and the boundary conditions are the sameattracted to the manifold much more rapidly, spending a good
as those in section IIA. For the cdses 0 the reactior-diffusion bit of time on their way to equilibrium.
equation becomes the diffusion equation discussed in section To understand the approach to the manifold pictured in Figure
IIA. The behavior ofy is 2, it is assumed that the initial distribution is generic in the
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s k=1, D'=0-l ' dimensional manifolds, because they describe the final approach
’ ‘ g to equilibrium. It is not hard to define higher-dimensional
_ manifolds for linear systems.
g 7 | In general, unlike the system studied here, the reactive part
E of a reactior-diffusion equation is nonlinear, and a less detailed
= 05 analysis is possible. The next subsection extends some of the
S analysis to a nonlinear reactiewliffusion equation near equi-
0 k= 1"D= 0 librium to demonstrate how some of this analysis is done.
L5 y 2. Irreversible Association Reactiofithe simplest nonlinear
reactior-diffusion equation describes an irreversible association
g 17 1 reaction
T
Z 05 ay _ 82y
/ it ky + D 2 (2.22)
0 AN
0 05 ! 15 Although this system depends on two parameteasidD, most
y(x=0.25) of the analysis in this subsection requires only the ratio
Figure 2. Results for four initial distributions (dashed curves), whose
time development is described by eq 2.15. The solid dot shows the _k
value of the equilibrium distribution for these pairs (eq 2.17). Both n= D (2.23)

panels were generated fbr= 1.0, and the top panel has results r

= 0.1, and the bottom fob = 10.0. The distributions are monitored  The equilibrium state satisfies

at two different pointsx = 0.25 describes thg-axis, andx = 0.65

describes ther-axis. The dashed lines approach a one-dimensional 82y

manifold that is described in eq 2.19. Whlris smaller thark in the 0=—py+=2 (2.24)
top panel the manifold is less attractive than it is wlkeis larger than ax

k, as it is in the bottom panel. The relative attractiveness is described

by the parametes, which is defined in egs 2.21a and 2.21b. For the Through the use of, eq 2.22 can be rewritten as

top panelo. = 2.6, and for the bottom panel = 8.7 (eq 2.21b). 2y

sense that the summation in eq 2.16 has a reasonable mixture ;Ty = —77)’2 + 8?2 (2.25a)
of expansion coefficients, tha, values, and is not centered D d

mostly on a single component. Then the analysis of section 1A \yith

and Appendix A is repeated starting with

7p = Dt (2.25b)
sin i’ sin % ~[k+72D/4]t . .
yﬂ(t) _ 2 2 e which reveals that the geometric structure of phase space does
v, | (%) . [37x,) (|4, e kroDrAlt not change with the transformation, although time is scaled.
sSiN—%~) SN\—5— ! The importance of; is also clear in the previous subsection,

(2.20) where a similar analysis could be done on eqs 2257.
) _ _ N Equation 2.22 is nonlinear ynand analytical solutions such
that uses the notation of eq 2.19 and is a slightly modified a5 those in the previous subsection are formidable, even if

version of eq 2.10 and ending with the following possible, so a numerical approach is undertaken to solve the
N equation. The partial differential equation is replaced by a set
uﬂ = (ﬁ) (2.21a) of ordinary differential equatiod
b \Y
4k + 97°D % = _k(Yk)2 + E(Ykﬂ — 2yt Y  (2.26)
a="—"""= (2.21b) dt AX
4k + 7D

wherey(x,t) is defined on a grid of equally spaced spatial points
To understand these equations more fully, see the derivation ofand the second derivative in eq 2.22 is calculated by finite
eqs 2.12a and 2.12b. Once again= 0 defines the manifold  differences. This method is commonly called semidiscrete or
of eq 2.19. method-of-lines. There are much more sophisticated versions
Equations 2.21a and 2.21b, as well as Figure 2, demonstrateof the algorithm?1-32 Only points interior to the boundary are
that the apparent attractiveness of the manifold is controlled by propagated with this system of ordinary differential equations.
the relative sizes df andD. Equation 2.21b demonstrates that The point on the boundary at= 0 is fixed by the boundary
o can never be greater than 9, the value for the diffusion condition asyo. In turn, yp is used to defing;
equation in eq 2.13b. This is different than the case of manifolds dy
for pure chemical-kinetic systems, where the stiffness is 1 2, D
controlled by the relative rate constants and can be quite large. dt —kyy)" E(Yz Yo (2.27)
Equation 2.21b demonstrates that there is very little attraction
unlessD is large compared t&, otherwise the relaxation is  The point on the right boundary is defined by the no-flux
controlled by the reaction and the manifold is not very attractive condition in eq 2.2, and the propagation of the rightmost grid
at all. point uses this constraint and the formula for backward second
It is also possible to define two-dimensional manifolds, and differences®
Appendix G.1 does that for the system studied in this subsection. Although it is not possible to analytically derive low-
The rest of the paper will study one-dimensional and two- dimensional manifolds for eq 2.22, the plots in Figure 3
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k=1,D=0.1 Equation 2.29 can be written as a matrix-vector product
2 sy =130 2.30
g 1t o O = Joy (2.30)
<
|
< o0st If the eigenvalues of are labeled ag; and ordered with the
lowest in magnitude designated &s (they are all negative),
(| then the spatio-temporal behavior of thg values is
0.4 0.6 0.8 1
L L VKD = B®rf¥) € (2:31)
g 1r Becausel is a real general matrix, it has left eigenvectors
T described here by the mattixand right eigenvectors described
> 05¢ by matrix R,37 so that diagonalization is written as
I S . T
03 05 07 09 11 13 A=LJR (2.32)

y(x=025) where ‘T refers to the transpose, and the expansion coefficients
Figure 3. Plots similar to those for Figure 2, but generated for eq and eigenvectors in eq 2.32 are
2.22. The top panel demonstrates that the nonlinearity of the system
leads to deviation from the linear manifold shown as solid lines in the @, (%) =R (2.33a)
two panels. The nonlinear system in the top panel is also more attractive
than the linear version in Figure 2, with results presented below T
describing this. The text has further important details. m= z LmiOYio(*) (2.33b)

I

demonstrate that the system is attracted to a one-dimensional
manifold, because of the behavior of the dynamics of the four \ynere it is understood that the and L values are properly

initial distributions plotted as dashed lines in both panels of normalized andyio(xJ) refers to an initial functional displace-
Figure 3. The trajectories derived from these distributions appearment on a grid of points.
to be attracted to a one-dimensional curve in both panels of  Equation 2.31 indicates that a small displacement will relax

Figure 3, demonstrating that these systems possess Onezng the analysis of the manifold in the previous subsection can
dimensional manifolds similar to those in Figure 2. The first o reproducediear the equilibrium distributioryed

approximation to a manifold for a nonlinear system is a linear

one, and Figure 3 demonstrates that a linear manifold (solid D(x,)
line) almost perfectly describes the strongly attractive case in Yo = D (x) Y5 (2.34)
the bottom panel and is close to the correct manifold in the top 0\

panel, based on the behavior of the trajectories. Although theWith the notation of eq 2.19 again used. The linear manifolds

nonlinearity of the system is not manifest to any degree in Figure in Figure 3 were calculated using eq 2.34. Because the

e e s s OSTVECIO() s nearl  sn functon hens mal (sce
; q y y elow) results are similar to the previous subsection. However,

in the vicinity of the equilibrium distribution. in general, manifolds are not linear, and the top panel in Figure

The linear approximations to manlfo_lds pictured in F|_g_ur_e 3 3 shows some deviation from linearity in the behavior of the
were generated from stability analysis near the equilibrium trajectories

configuration, which is a generalization to partial differential Near equilibrium it is possible to look at the attractiveness

equations of the stability of equilibrium points in ordinary of the manifolds for eq 2.22, as was done globally in egs 2.21a

. . 36 ) . .
g.f;ecr:r:ﬁ; e?rg?r;ﬂzni'ilibriﬁ\rrlsmiz\igsdtlﬁgl?gltleon\:v?rr\]t :%;:?Ct;orgal and 2.21b. Analysis similar to what was done there defines the
P y q 9 9 P generalization of eq 2.21b as

differential equation

a(%y) 9°0y _ A

e 7 g9y = 2.35

p 2ky" vy + D i (2.28) 7 (2.35)
where dy describes an infinitesimal displacement in function Through the use of eq 2.35, Figure 4 compares numerical results
space away from the equilibrium stgt®(x). Only wheny®dis for the nonlinear equation in this subsection with results for

constant may eq 2.28 generally be solved analytically, usually the linear, unimolecular case in eq 2.21b. In the top panel, the
as a sum over basis states. However, a numerical solution ofdashed line shows the approach to 1.0 for the linear case, and
eq 2.28 can be generated starting with a basis set consisting othe solid line shows that the nonlinear, association reaction
the eigenvectors of the diffusion equation, as described in sectionalways stays attractive even agets large, a situation where
lIA, or on a grid as is done in eq 2.27. For consistency, this diffusion is much slower than reaction. Although the manifold
latter technique is used, and a set of ordinary differential is attractive for the large; case near equilibrium, it is less
equations describing the functional displacements is written  attractive than the smaii cases shown in the top panel, where

(oY) D o. approaches an asymptote of 9 and where diffusion is much
L —2ky, By, + _2(5Yk+ 1 — 20y, + Oy, faster than reaction.
at AX Another aspect of the nonlinear system versus the linear one

(2.29) in the previous subsection is that the ratio of adjacent eigen-
As in eq 2.27, points adjacent to the boundary have a different values is smallest for the first two, something not necessarily
definition. true in eq 2.21b, at least for large This is demonstrated in
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1 T T T = Nonlinear: n=0.01
08 F - 2 ; : :
0.6 :
g oa b 1 L5t
02 P -
P — 1 T I ! 1 o) 1t
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n
=10 0 : : : :
1= T T T 0 02 04 06 08 1
B e e 4 X
F 06 ] Nonlinear: n= 1000
T 04 L~ i , Nontinear: n= 100(
02 5
0 1 1 1 1 15
0 2 4 6 8 10
n > 1t
L5 Nonlinear: "r]: 1000 : 05 F
@ Lk / i 0 ‘ ‘ .
T os — 0 02 04 06 08 1
3 - - . . .
= Figure 5. Comparisons to the lowest eigenvectorsiafeq 2.30) at
0 L L equilibrium for two values of;. Both panels show the eigenvector as
0 0.5 1 L5 a solid line. In the top panel at loythe eigenvector is almost identical
Lo to the eigenvector of the diffusion equation (dots in the top panel). In
Linear: n= 1000 . . . X
1.5 T T the bottom panel, at a high, the eigenvector is very different from
) s / i the eigenvector of the diffusion equation (dashed line).
O’ -
Il . .
g osf . that at smally the lowest eigenvector is nearly the same as the
0 L . linear eigenvector but is far from it at large It is clear from
0 0.5 1 L5 Figure 5 that for smalp diffusion dominates the attractiveness.

¥(x=0.25) For largey, there appears to be a complex interplay between
Figure 4. How the attractiveness near equilibrium changes witk/ reaction and diffusion and it is difficult to rationalize the form
D, eq 2.23) for the linear (dashed line) and nonlinear system (solid) ©f the eigenvector in the bottom panel of Figure 5 or the
described in the text. The linear system approaches 1.0, which is noasymptotic value of & (0.3579) for the solid line in the top
attraction at all, while the nonlinear system reaches an asymptote of panel of Figure 4.
l/a. = 0.36. The second panel from the top describes the ratio of ~ The weak deviation from nonlinearity observed in the top
successive pairs of ngenvalues near _equnlbrlumforthe linear (dashed)pane| of Figure 3 can be more pronounced for systems of
and nonlinear (solid) systems. This demonstrates that for low- . inaar reactiondiffusion equations, as is clear in Figure 1c
dimensional manifolds, the nonlinear system is more attractive near ’ o
equilibrium than the linear one for low-dimensional manifolds. The and methods need to be developed to generate them. This will

bottom two panels demonstrate how nonlinearity affects the global require the extension of some of the analysis in this subsection
attractiveness of a manifold, at the same valug.dfor the nonlinear to systems of nonlinear reactiediffusion equations, and this
system in this subsection (second from bottom) the manifold is much is presented in Appendix B.

more attractive than it is for the linear case (bottom), as anticipated

from the analysis near equilibrium in Figure la. [ll. Isomerization with Diffusion

. . . The examples in section 1IB demonstrate how the phenom-
the second panel of Figure 4, where the solid line shows a series e ! . L
; . : X - ._“enon in Figure 1 can arise for a single reactaiiffusion
of ratios of adjacent eigenvalues for the nonlinear, association . . .
. . : equation. The analysis is now extended to systems of reaction
reaction and the dashed line shows results for the unimolecular 7.2 . - . .
. . - diffusion equations, for a system where the solution once again
reaction from eq 2.21b, where the ratio reaches a minimum away L .
_ . . can be derived in closed form as a summation. Another purpose
from n = 0. The results in this panel suggest that the

one-dimensional manifold for the association reaction is more of this Sec“or.‘ IS to extenql the anaIyS|s.of the competltlon
. . - . : . L between reaction and diffusion and the various scenarios where
attractive than higher-dimensional manifolds in the vicinity of

the equilibrium distribution and that it is not the most attractive this competition leads to attractive one- and two-dimensional

for the linear case, at least when the attractiveness is weak. FrommanifOIds' . S o .
! A. The System.Consider the reversible isomerization reaction

our experience with nonlinear reactiediffusion equations of
the type studied in this paper, the degree of attractiveness A=B (3.1)
increases monotonically as the dimension decreases.

The consequences of the attractiveness near equilibrium areUnder conditions where the two species diffuse with unequal
evident away from equilibrium, as shown in the third panel of but constant diffusivities, the spatio-temporal behavior of the
Figure 4. Although the system is not as attractive as the one insystem is described by
the bottom panel of Figure 3, it is much more attractive than

the linear case of the previous subsection, which exhibits no ay, 32y1

attraction aty; = 1000, as shown in the bottom panel. i —kiy; + ky, + D — (3.2a)
To further illustrate the effects of nonlinearity, a comparison X

of the lowest right eigenvectors is shown in Figure 5 at small

7 (top) and large; (bottom), which are plotted as solid lines. % = kv. — kv, + D 3_23/2 (3.2b)

These are compared to sirq2), the lowest eigenvector of the ot T T, NG '

diffusion equation, plotted as a series of dots in the top panel
and as a dashed line in the bottom panel. Figure 5 demonstratesvhere they values refer to concentrations or densities of A and
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B and thek values are forward and reverse rate constants. combination. These choices merely fix a projection of the one-
Boundary conditions for both species are the same as those indimensional manifold, which is embedded in an infinite-

eq 2.2. The initial distributions dimensional space. It is straightforward to derive the ratio
RI/R,, but it is not included in the paper, although it is used

in the calculations.

C. Attraction to the One-Dimensional Manifolds. The
analysis of the approach to the one-dimensional manifold
and follows from Appendix D. Because the analysis assumes the

final attraction is from a two-dimensional manifold, the approach

y,(%,0) = y54x) + ; b,+(0) sir{(m + g)nx (3.3a)

. 1 depends on whether the system parameters define it as a
Y,(x,0) = y51x) + z bom(0) S"'{(er 5)”)(] (3.3b) manifold of type 1 or type 2 (Appendix G.2). For type 1, the
" approach to the one-dimensional manifold op.#y.s projection
lead to a set of coupled equations for thealues is written in the usual form
db 1)2 Uy [U)*®
== —[kl + (m + E) nZDl] by, + kb, (3.4) o (u_;’ (3.92)
db, 1\2 A
—2=kiby— [k + (m + E) 2D,|b,  (3.4b) 0 =" (3.9b)
10
The equilibrium distributions satisfy The coordinatesi, andu, are
oy; X X
0= —klyiq+ k2y§q+ D, _axz (3.5a) u Rgﬂ/m Sm( > ) — Rgly&r Sm(?)
5= X X (3.108.)
u 0 . o N
PV 1 Ry sm(—) - Ry, sm(—)
0= ks~ k57 + D, —Zﬁ (3.5b) TN 2] T2
o Rl 37X, . Xg
wherey;® andy3" refer to the equilibrium distributions of the U 2115 SIS~ | — Ri1Ys, Sin >
two species, with the spatial dependence suppressed. Appendix 0o " anx, (3.10b)
C describes the full solution of this isomerization example. 2 R;lyig Sin(T) Rilycl)o sin(T)

B. One-Dimensional Manifolds.The analysis of section 11B
is extended to the system of eq 3.1, by using the time wherey?
development in eqs C.1a and C.1b and the factithds always
the lowest eigenvalue in magnitude. The one-dimensional

andyy, are the obvious generalizations of egs 3.8.
For type 2 manifolds (eq G.2b), the approach is

manifold can be represented in several ways. For example, a u  fu\e
spatial value ofy, can be defined in terms of a spatial value =15 (3.11a)
of y1 u  \u
X A
R, sin(Tg) o, = /1—20 (3.11b)
Yoo = X Yip (3.6) 10
R(l’lsin(7ﬁ) with the following coordinates
and any other spatial value gf can be defined in terms ¢fg u _Rglylﬂ Sin(n_xa) + R(iﬂ/za Sin(ﬂ_xﬂ)
with the following g 2 21 (3.12a)
UO . JTXU . ‘nxﬂ '
. (tho) 1 — Ry sin —+ R2y2 sin —
sin|—-
2
Yie = 7\ Vs (3.7 X X
JTX, . T . el
sin(—ﬂ) U, Ro¥is S'”(T) — Rz, 5'”(7)
2 == (3.12b)

:_
sl ) - Rt sl %)

D. Numerical Examples.As outlined above and in Appendix
G.2, the attractiveness of the one- and two-dimensional mani-

Because the system is linear, the manifolds are straight lines.
The notation employed in egs 3.6 and 3.7 has been adapted
from section Il. For example

Yip = Va(Xs) — Y1 (%) (3.8a)  folds and the nature of the two-dimensional manifolds depend
on the ordering of the eigenvalues, which in turn depends on
Yoo = Yo(X,) — Y5(X,) (3.8b) the relationship of the rate and diffusion parameter,, D1,

andD,, as indicated in egs 3.11a and 3.11b and the eigenvalues

and the rest of the notation follows. The spatial potsand
X can be the same or different. Equations 3.6 and 3.yse

as the independent variable, lyut could be used, or some linear

presented in Appendix C. All possible scenarios for the nature
of the one- and two-dimensional manifolds can be summarized
with three parameters
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f=t D (3.13a) e
=—__° 13a —
Lokt k, <

P

D,—D, - 3130
= — <
gZ k1+ k2 Cl - CZ - gl ( . )

&
(=]

O Sk PR (3.13c) .
= —1<¢g< 13c
3T Tk 3

The parametet; fixes the relative size of the diffusion versus
reaction, and the other two parameters fix the actual values of
the attractiveness defined in section IlIA. The attractiveness of
the one-dimensional manifolds for the two types of manifolds
(egs G.2a and G.2b) are

&

hay A+, — 16+ 7205, + 81n'E,?

Mo 44 a2, — 16+ 87%,0, + 70,
(3.14a)

oy =

&

or

hoo A+ 7%, + 16+ 82,5, + a'C,? &,
=

o, =

Figure 6. Attractiveness of the one-dimensional manifolds at three
values of¢; (eq 3.13a). The contours show valuesoofanging from
a minimum (dotted lines) to the maximum of 8.0 (solid lines). In the

. . . . . top panel, the minimum contour is at 4.0, and in the bottom two the
Figure 6 summarizes the attractiveness of the one-dimensionajyinimum contour is 2.0. The dashed curves delineate the change from

manifolds at three values @: 0.1, 1.0, and 10. In physical case 1 to case 2 outlined in the text.

terms, these refer to situations where reaction is fast compared

to diffusion, where diffusion and reaction compete, and where 4,9 panels compared to eq 3.15, and for these latter examples
diffusion is fast compared to reaction. These plots show contourso aitractiveness depends on the faster reacting species also

of constanta, calculated from the ratio of the first two e Sl .
. ’ . . _diffusing rapidly: if D; > D,, thenk; > kp, and vice versa.
eigenvalues. The dashed lines in the panels show the boundaries g rapidly ! 2 ! 2

between the different cases. In the panels, contours are drawn 1N€ two scenarios for attractive one-dimensional manifolds
from . = 2.0 to o = 8.0 in increments of 1.0. The lowest 'ely on a separation of time scales. The separation of time scales

contour is drawn as a dotted line, the largest contour at 8.0 ashappens in two ways. The first way is observed in the top panel
a thick solid line, and the other contours with normal solid lines. and is separation of time scales between the two physical
In the top panel the minimum contour value is 4.0, and in the Processes; the diffusion is slow compared to reaction. The other
bottom two it is 2.0. In all the panels, the largest region is Scenario is evident in the bottom panel and involves a separation
labeled. The largest region in the top panel is case 1, and theof time scale between species; one species is slow to react and
largest regions in the bottom two panels are case 2. slow to diffuse, and the other is fast to react and fast to diffuse.

Figure 6 demonstrates that the attractiveness of manifolds is  Figure 7 summarizes the attractiveness of the two-dimensional
dependent on the relative rate of diffusion versus reaction, as manifolds, for the same three valuestefas Figure 6. Contour
measured by;. When diffusion is slow compared to reaction 1yes for the bottom plot follow the conventions of Figure 6,
as itis in the top panel of Figure 6, there is a very wide range 1+ the top two plots are much flatter and only one contour
of systems with highly attractive one-dimensional manifolds. value (2.0) is plotted on the top panel and four on the middle.
When¢; is larger in the bottom two panels of Figure 6 there is The highest point on the top panekis= 2.8. The middle panel

Zttrr];lé(t:i\k;enr?lgg\ilfvci:jsra'?ﬁz t(())f syas:ltzrlr]gf VI\:IP?Jrree ?Zﬁgoﬁ;%izggg contours start with 2.0 and end with 5.0. The lowest contour at
) PP 9 2.0 is plotted with a dotted line and the highest at 5.0 with a

that systems with the most attractive manifolds lie along a ridge thick solid line. Seams are again plotted as dashed lines in Figure

where 7 and separate three cases, labele,1which follow the
D,—D, k —k poqventions of eq G.7. A comparison of Figures 6 and 7
D Dk Tk (3.15) |qd|catgs that systems that haye the most.attractlvg one-
1 2 M2 dimensional manifolds have relatively unattractive two-dimen-
sional manifolds, and vice versa.

10 4+ 7%, — 16+ 8775,5, + n“cz(zs \ab)

that indicates that the relative difference in the diffusion rates ) . N ]
is similar to the relative reaction rates. Figure 7 demonstrates the physical conditions under which

As diffusion and reaction become comparable in the middle two-dimensional manifolds are most attractive. When diffusion
panel of Figure 6 and then diffusion becomes greater thanis slow (top panel), two-dimensional manifolds are not very
reaction in the bottom panel, the range of systems that exhibit attractive. The situation changes somewhat in the middle panel,
strongly attractive manifolds first narrows (middle panel) but which has a maximum value of = 5.3. It demonstrates that
then begins to become larger in the bottom panel. Also, the the most attractive manifolds are fo = D». In the bottom
conditions for highly attractive manifolds changes in the bottom panel the same condition leads to even more attractive manifolds
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£, =0.1 that the system is similar to the one-dimensional diffusion
. s 1 L% A equation, with pairs of eigenvalues in the isomerization case
05 kY RS being similar to single eigenvalues in the diffusion equation
= ol ‘-.“\ Casez ‘ 1~ example.
0.5 ! Cm‘a \r IV. A Nonlinear Reaction—Diffusion System
BN B PR The analysis of systems of reactiediffusion equations is
g =1 now extended to one which is nonlinear but which has a closed
L form solution in terms of a summation. This system once again
05 ‘ will be studied for how the competition between reaction and
H ! diffusion affects the low-dimensional manifolds. In addition,
oF 0 I 24 ] 1] because of the nonlinearity it will provide a test for the numerical
05 |1 g methods developed in the subsequent p&per.
/1' i tH ~ A.The System and Its SolutionThe analysis in section Ill
) is extended to a nonlinear system
1 € =10 /-\ Zy
' ay. a
os | i Jo Nt (4.12)
o5 0ri, 1T
0.5 i i 8y2 2 BZYZ
L IRt W = vetay" +D,— (4.1b)
o) . \ 1 L i ot axz
1 05 0 05 1

(o with boundary conditions defined in eq 2.2 and the initial
Figure 7. Contour plots presented to depict the attractiveness of the conditions of Eq 3.3. All of the resglts. presented here were
two-dimensional manifolds. The designations on each plot list the cases.9enerated foa=y — 2, because the kinetics part of the problem

These are generated for the same three valués a$ Figure 6. The  has a simple one-dimensional manifolgs = y:* (eq 2.6 in ref
maximum contour is plotted with a thick solid line in the bottom two  15). The coupled equations for the expansion coefficients are
panels, and the minimum value is shown as a dotted line in those panels.

In the middle panel the contours range from 2.0 to 5.0, and in the bottom db,, 12 ,
panel from 2.0 to 8.0. The top panel shows a single contour at a value & = —[1 + (m + E) T Dl]b1m (4.2b)
of 2.0 (maximum value is 2.78). The dashed lines depict the seams
between the cases. The designations “case 1", “case 2", and “case 3”
refer toaus, az, andoyy, respectively. dbp, 1)\? P m
——= |y +{m+ ] 7Dl — 22y Sy +
with the maximuma being 8.3. Figure 7 indicates that the dt ]

maximum attractiveness of two-dimensional manifolds is for a Z Z rebyby, (4.2b)
systems where both species diffuse faster than they react and T
do so at approximately an equal rate. These conditions lead to

a system that behaves in a manner similar to a pure diffusion Where the following two integrals have been defined
equation, such as the one studied in section IIA.

The behavior of systems as they approach the one- rp = Zfsin[(m—i—%)nx] sir{(k-i—%)nx] sir{(n—i—%)nxldx
dimensional manifolds is shown in Figure 8. These plots show (4.3a)
yisly2, projections of the one-dimensional manifolds (eq 3.6),
with manifolds plotted as thick solid lines and equilibrium m_ . 1 I 1
positions as large solid dots. Results for the propagation of four § =2 f v sn{(m + E)m(] Sm[(J + Eﬂx)] o
different initial distributions are plotted as dashed lines in all (4.3b)
th_e panels. Values faks andx, are I|§ted in the axes labels. It is possible to explicitly calculate these integrals, but this is
Flgu_re 8 demonstrates _the gualitative dl_fferences_ n the at ot presented anywhere in the paper. The results presented in
tractiveness of the manifolds. The behavior of trajectories in the rest of this section include the correct value for them.
Figure 8 can be compared to the valuestof-or example, the Appendix E presents the solution to egs 4.2a and 4.2b.
plot on th_e upper left ShOV\_’S a system whose one-dimensional Equation E.1la has the solution far, which is derived directly
manlfolq Is strongly attractive am’ =8.7.The system on the from the diffusion equation. The solution fgs is presented in
upper right has a manifold that is not very attractive, with the eq E.1b. The solution of, is repeated, along with a concise
system relaxing almost directly to equilibrium. It has a value form for y, '

of o of 1.5.

A two-dimensional manifold is studied in Figure 9 for the _ 1 L (miL2peDyt
system on the upper right of Figure 8. Asly2./y24 projection yi(xt) = yi{%) + zo bim sm[(m + —)JTX g [ =01
is used. The one-dimensional manifold in Figure 8 has m= 2
1.5, and the two-dimensional manifold in Figure 9 has=

(4.4a)
5.9. Thls rglatlve difference is ewdgnt in the comparison of the yo(x,t) = y29%) +
panel in Figure 8 and the plot in Figure 9. There is almost no 1
attraction to the one-dimensional manifold in Figure 8, but a ;
' Cyy(t) + t) + c5 ()] sin|[m+ =|=zx| (4.4b
strong attraction to the two-dimensional manifold in Figure 9. ;[ () + Corf®) + Con(0)] [( 2) (4.40)
The separation of time scales for the system in Figure 9 is one

of the cases discussed for FigureDd.andD; are close enough  The time-dependent coefficients are
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Figure 8. Several examples of the way distributions approach the one-dimensional manifolds. The labeling on the top of each panel lists the values
of the §; that are presented in the panel, and these can be compared to the contour plots in Figure 6. In turn, these can be compared to the relative
attractiveness evident in the plots. For example, in the panel on the top left, the manifold (solid line) is very attractive, and in the panel on the top
right it is not attractive. In this latter case, “trajectories” (dashed curves) go directly to equilibrium (the solid dots in all the panels).

¥5 (x=0.50) nle 9 ﬂle
casel 1 H <1+ (4.6a)
5 4 4
| 7D, D,
Lr casel 2 I <y+ (4.6b)
05 | 4 4
0 -
05k 7D, 97D,
: 2 case2_1vy+ 7 <y+ 7 (4.6c)
5
1 yi (x=0.75) .7T2D .7T2D
2 1
y, (x=0.25) O- 5 case2_1y+ 7 <1+ 7 (4.6d)

Figure 9. An example of an attractive two-dimensional manifold. This ) ) ] ) ]
is for the same case as the panel on the top right of Figure 8. Note For case 1, the one-dimensional manifold is most easily
how there is attraction to the plane (defined in eq G.3) but not to the represented witly;s as an independent variable and points on

one-dimensional manifold (eq 3.6). the ys-distribution andy,-distribution defined via the manifold
as
Cun(t) = C1(0) € 2P (4.5a)
. JTXO'
_ . sinl——
o) = Z " @ {2 H(kF12P+H(n+112P]a2D)t (4.5b) 2
2m Z kn Vi, = —nx yl,B (4_7a)
sin(—ﬁ)
o) = z qm o [1H(+1/2)207Dy)t (4.5¢) 2
m .
' v
_ 1B Yip
Yoo = TaX) o T TalX)— - (4.7D)
The coefficients shown in these equations can be derived from (Sin —ﬂ) sin—_
eq E.1. 2 2
B. One-Dimensional and Two-Dimensional Manifolds. Equation 4.7a has been presented in earlier sections (e.g., section

Equations E.2E.4 present the information necessary for II). To derive eq 4.7b, start with the longest time behavior of
defining and evaluating one-dimensional and two-dimensional Y1 andy:

manifolds. Although the system is nonlinear and there are no X

global eigenvalues, equations for the one-dimensional and two- Yip = byo sin(—ﬂ) g (Ha?Dy/a (4.83)
dimensional manifolds can be derived, with the results for the 2

two-dimensional manifolds described in Appendix G.3. The (142 (042

depend on quantities that are obvious frrc)ﬁn the solution ?;1 Yap = Duotay) € 1T + bigralig) € Dl/z();f 8b)
Appendix E and laid out explicitly in eqs E.4&.4c. As in '
section I, there are several cases, which are ordered here inTher values are defined in Appendix E. Equation 4.8a is used
these pairs to define
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(142 Y 41— Cy) + 977, +
by, € (L+72Dy/a)t _ —;fx (4.9) gy = ( ) 2 (L1 1+ 5) (4.14a)
s %) 41— L) + 7+ )
A1+ &) + A%E, —
which is substituted into eq 4.8b to derive eq 4.7b. = ( &) ”2@1 &) (4.14b)
It is also straightforward to use as the independent variable 41— Gy + (8, + 8y
for the one-dimensional manifold for case 1. In this coordinate
system, points for thg; andy,-distributions are 41+ gy + 9;12(@1 - &)
Oy = > (4.14c)
% AL+ &)+ 7(E, — &)
Y1, = K(Xg) SiN > (4.10a)
41— &) + A%(E + €
2 I > L Sl S
Yap = Tao(Xp)k (Xg) + T30(X, )i (X5) (4.10D) 41+ 8y + 78— )
- 2 Figure 10 summarizes the valuescofor three values of;.
K(x;) = 7o) £ \/[T3°(Xﬂ)] + AYsTad%y) The convention for contours is the same as in Figures 6 and 7.
ZTzo(Xﬁ) The lowest contour is at 2.0 and drawn with a dotted line, and

(4.10C)  the highest contour is at 8.0 and plotted with a thick solid line.
The dashed lines in this plot delineate the four cases in eqs 4.6
and 4.14, which are labeled on the plots.

The top panel in Figure 10 demonstrates that the most
attractive one-dimensional manifolds for the case where diffu-

For case 2, the manifold follows from the examples in section
Il and is represented as

Y109 = y14%) (4.11a) sion is relatively small compared to reaction occurs under “stiff”
reaction conditions, that is whenis large or small, because
sin(n—xo) maxima are neatz values of 1 or—1. Furthermore, the top
_ 2 (4.11b) panel demonstrates that attractiveness is favore®for D;
Yao . (nxﬁ) Ya ' (&2 < 0) wheny is large and it is favored fob; > D, wheny
sin > is small.

The middle and bottom panels in Figure 10 indicate that once
C. Attraction to the One-Dimensional Manifold. It is again attractive manifolds are more likely under stiffer reaction

possible to study the approach to the one-dimensional and two-conditions, although this restriction is relaxed to a good degree
dimensional manifolds presented in the previous subsection.in the bottom panel, where diffusion is fast compared to reaction.
Because of the complexity of the terms to describe attraction In that case thex = 8.0 contour value on the left side of the
to the two-dimensional manifolds, this is left out of the Paneldescribes systems whose valug isfa minimum of 1.9.
discussion, and only numerical examples are shown in the next Because they are numerous, the eight cases for the attractive-
subsection. ness of the two-dimensional manifolds are not explicitly written
As in section IlI, it is assumed that a hierarchy of manifolds here. Figure 11 summarizes their values for the same three
exists and that to a good approximation the final approach to values ofC; as in Figure 11. Once again, when diffusion is small
the one-dimensional manifold starts on a two-dimensional compared to reaction, the two-dimensional manifolds are not
manifold. There are thus four cases to consider, as outlinedvery attractive as indicated in the top panel of Figure 11 (see
above in eq 4.6. The coordinates used follow the form in section Figure 7). The two-dimensional manifolds become increasingly
I more attractive as diffusion becomes larger than reaction.
Figure 11 can be compared to the analogous set of plots for
Uy  [Uy)% isomerization in Figure 7. These two plots give close to the
0 (4.12) same picture. When diffusion is greater than reaction two-
dimensional manifolds are more attractive. There are a few
differences between the sets of plots. Some differences are due
to the definition oflz in the two cases. However, there is an
additional maximum in the top panel of Figure 11 compared to
Figure 7, and the maximum has moved to the middle panel of
Figure 11 compared to Figure 7, with a significantly higher
maximum (6.7 vs 5.3). The middle panel of Figure 11

Up
where the subscriptij” refers to the four cases. Appendix F
describes thei-coordinates for all the cases.

D. Numerical Examples.To study the manifolds it is useful
again to define three variables, as was done in section IVD

&= M (4.13a) demonstrates that the most attractive manifolds are when
! y+1 reaction and diffusion are comparable and both rates of reaction
are equal as are the two diffusion constants.
D, — D, Figure 12 summarizes the one-dimensional manifolds for the
L= g7 h=hshL (413 o

systems studied in Figure 10. The top row shows a series of
manifolds generated at the same three valu€g a6 in Figure

10. They were chosen from systems that follow the= 8.0
contours in Figure 10, which are on the positiehalves of

the panels, case 1 manifolds (eq 4.7). All of the plots in the top
For one-dimensional manifolds, the attractiveness can be writtenrow of Figure 12 args/y», projections. The value of; is fixed

with these parameters as at 0.25 andk, at 0.75. The bottom row in Figure 12 shows a

§3=?y’+;i “1sg =1 (4.13¢)
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analysis of these functions reveals that althoughtle 0 terms
in egs E.6a and E.7a are by far the largest, there are still
significant contributions fromm > 0.

Further information concerning manifolds is presented in
Figure 13. A set of distributions is plotted along one of the
manifolds for&; = 0.1 from Figure 12. The distribution for
species 1 is plotted as a solid line and the distribution for species
2 as a dashed line. The small parabola in each panel indicates
the location of the distribution along the manifold with a large
solid dot. Figure 13 is presented to emphasize that a point along
the manifold defines a distribution. It is truly a one-dimensional
manifold embedded in an infinite-dimensional function space.

The analysis of the manifolds for the nonlinear reaction
diffusion model is completed in Figure 14. These panels show
how distributions relax to one of the manifolds presented in
Figure 12. The solid lines in the panels show the manifolds,
and the solid dot on each indicates the equilibrium value for
that projection. It can be observed that the dashed lines are rather
strongly attracted to the one-dimensional manifolds, indicative
of the relatively large value af (8.0) for all of the plots.

V. Conclusion
-1 05 0 0.5 1

(<%}

Figure 10. Plots analogous to the ones in Figure 6, with the
designations of the cases corresponding to eq 4.6.

This paper has explored the approach to equilibrium for
reaction-diffusion equations on bounded domains under condi-
tions where there is a single equilibrium state. The study has
been restricted to one spatial dimension and one or two species.
The purpose of this paper has been to show how such systems
approach equilibrium along low-dimensional manifolds in the

1.?1.:0'{ ——

051 ] infinite-dimensional function space. It has been shown that
S ok _ attractive one-dimensional and two-dimensional manifolds exist
os | 1 for these systems over a broad range of system parameters, but

the attractiveness is limited compared to that of manifolds for
the chemical-kinetic models without diffusion (for example, ref
15), as an investigation of the attractive properties has shown.
X This paper sets the stage for the numerical algorithms
presented in the next pap®For the most part the systems

05 .
. I studied here have manifolds that can be represented analytically.
oo i The analytical systems will provide important test cases for the
05 1 methods presented in ref 25 and include a system (section 1V)
4L R that is nonlinear. In the context of this paper they have provided
‘ simple test cases to understand the ways that the manifolds can
| be represented.
05 R /I, }/’ b The only system studied here that required a numerical
'* : { { I \‘ [ | 1 1 analysis is the one in section 1IB.2, and this led to a more
W5 0 ] l | : complete description of local linear dynamics presented in
05 I f\ H | | ] Appendix B. This analysis will become important in the next

g
|

P

Ay ]

-1

-0.5

0
[

0.5

paper, where it is employed for generating accurate low-
dimensional manifolds. The reactiodiffusion equation in
section 1I1B.2 is also important, because it demonstrated that

nonlinearity could lead to manifolds that are more attractive
Figure 11. Plots for the nonlinear system in section IV analogous to  than corresponding ones for linear systems.
those in Figure 7 for the isomerization reaction. The algorithm for .

plotting contours is the same as in Figure 7. No seams are plotted, nor No attempt has been made here to connect this work to a

are any designations for manifolds shown, as they were in Figure 7. large body of literature on “inertial manifolds” for partial
differential equationd?2°The definition of “inertial manifold”

different set of projections fot; = 0.1, the system from the  requires certain conditions, which have not been fully investi-
top left corner of Figure 12, and these are evident from the axesgated here. It appears that the main condition, exponential
labels. They include §4/y2; projection on the bottom right.  attraction®® is met for most of the systems. However, it is not

As expected from eq 4.7, these manifolds are parabolic, andclear that the system of Figure 1, other systems in ref 25, and
due to this nonlinearity, they provide good test cases for the the system of section IIB.2 have exponential attraction. These
methods in ref 25. Although the parabolic form of the manifolds systems have second-order kinetics, which is not exponential.
is obvious from eq 4.7, the details of the shape are not However, any difference between the manifolds studied here
transparent, due to the presence of the functipgandzsg in and inertial manifolds appears to be one of strict mathematical
eq 4.7a, which are defined in Appendix E. A more complete definition, because they are finite-dimensional manifolds em-
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Figure 12. Plots showing how one-dimensional manifolds (eq 4.10) change shape along the cont8W in Figure 10, for case 1. The projections
are defined in the axes labels. Each panel shows a compilation of the manifolds for the systems definet] bgldles andx. All panels have
results fora = y — 2, for reasons noted in the text (see the discussion of eq 4.1).

1.5
1
0.5
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X X X
Figure 13. Plots demonstrating how distributions change along a one-dimensional manifold. The solid lines show the yalaredothe dashed

linesy,. The position on the manifold is indicated by the inset picture in each panel. This case is oné€poftidel examples in Figure 12. The
values of the parameters aye= 74.65,D, = 2.84, andD, = 4.73.

bedded in an infinite-dimensional space. A more mathematical system to equilibrate. Purely hyperbolic systémaith no
investigation of the manifolds is outside the scope of the presentdiffusion almost certainly would not possess the types of
project. manifolds discussed in this paper.

The work described in this paper focuses on bound domains

and one particular type of poundary condi_tion. It also Iim!ts Acknowledgment. This work was supported by the Office
transport processes to diffusion only. Changing these conditionsgf Basic Energy Sciences, Division of Chemical Sciences,

will affect the results in this paper to varying degrees. All of Geosciences, and Biosciences, U. S. Department of Energy,
the results presented in this paper depend on a discrete, butjnder Contract No. W-31-109-ENG-38.

infinite, spectrum, so it seems likely that a purely continuous

spectrum for a system with infinite extent might eliminate the

manifolds studied here, although they might persist locally in Appendix A: A Hierarchy of Manifolds for the Diffusion
space. A change in boundary conditions will change the energy Equation

spectra and thus the exponential factors in many of the equations

presented in this paper (for example, eq 2.5). This change would  As the diffusion equation relaxes to equilibrium, it proceeds
thus affect the degree of attraction but should not affect the through a series of manifolds, the last few of which are described
overall picture presented in the paper. It seems likely that the in section IIA. This cascade can be understood by starting from
results presented here would be not change with the additiona manifold described by the set of all functions with finite extent
of advection, as long as there is sufficient dissipation for the in the spectral space described in eq 2.5
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Figure 14. Panels showing how distributions are attracted to the one-dimensional manifolds. The manifolds are plotted as solid lines and are
manifolds for a single system chosen from Figure 12. The dashed lines show the results for a set of distributions. The top left panel and the panels
in the bottom row are all different projections of the same manifold and set of distributions.

n-1 . 1 in the original species coordinates, with being the same as
yxt) =y, + 20 a, e MY ginfm + = f7x Xn in the matrix notation.

m= Equation A.7a is compared to thredimensional manifold
for the system whose dimensionrnist+ 1, which is described
This equation defines amdimensional manifold in the infinite- by the matrixA™1. When the dimension in eq A.6 is increased,

dimensional system. To parametrize the manifold, consider the then-dimensional manifold for then(+ 1)-dimensional system
set of coordinates is described byd),"** = 0. Then-dimensional manifold is

(A1)

J— — — _ n
Up = y(Xﬂ) Yor Uy y(Xa) Yor - (AZ) (dn+ 1)n =0= zo(an+1 ;n:hum (A8a)
that are described by the following matrix-vector product ™
_1 n—1
u"=A"d" (A.3) u=—— Z)(aﬂl Ui (A.8b)
(an+l)nn—l =

where the superscripts refer to the sizes of the vectors and the

square matrix, which has the following matrix elements To establish that the system is relaxing through of series of
manifolds, eqs A.7a and A.8a need to be compared term by
term as a function ofn, Starting with themth term in eq A.8b
and using the method of minors to find the invéPse

(A= sin{m + 5, (A.4)

and thex, values refer to, X,, etc. The vectod is described o1
as @ Dom_ —Am

@ det@)

(A.9)

dm =a, e—(m+1/2)2n2Dt (A5)
where A, is the algebraic complement @&f. The algebraic

complement can be written as the sum of a set of determinants
~Amn -1 nt

— (_1)n+m(an+l)nkdet@n);é

det@") det@") &=

One can observe that all matrix element#\8f! are contained

in A", in the same order as they appear there, as well as for the
vectorsd and u. The elements of the vectal" are now
calculated by matrix inversion

d" = (AN (A6) (A.10)
A point on the manifold is then described (see eq A.1) With some algebra and the definition of determinants, it can be

shown
= o < -1 -1 ! nt
Un = Z)(a.n )nkdk = Z Z(an )nk(a.n)kmum (A.?a) (_1)n+m(an+l " det(an)l:]. — (an+1) (an)—l
= = N4 n m A nk km
det@’) = k=

A7b) (A.11)

Uy = Y(x,) — Y*(x,)
which proves that eqs A.7a and A.8a are equal and that the
with eq A.7b showing how a point on the manifold is evaluated system cascades through of series of surfaces defined by
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truncated spectral decompositions. Becausért'eqs A.7a and The index Kk’ again refers to a grid point, and’‘labels the
A.8 is arbitrary, this demonstrates that there is a cascade ofspecies. Fon species defined om grid points, each sub-block
manifolds of decreasing dimension as the system relaxes toJ* has dimensiom x m, and the total dimension afis r x
equilibrium. r, wherer = nm WhenJ is defined in this manner it is made
clear that an eigenvector of the finite-dimensional version of
this matrix consists offi sections referring to thie species, and
each section has a length It is understood that to study the

It is clear from the definition of the manifold derived from
eq A.8a that the attraction is exponential in time. In general,

the attractiveness of the manifold is more difficult to define in eigenvalues and eigenvectorsiit is necessary to numerically

phase space but is straightforward in the coordinaw@lues. converge the eigenvectors of interest. From experience, the

Here it is assumed that the approach to radimensional  gjgenvalues and eigenvectors with the lowest magnitude eigen-

manifold starts with then(+ 1)-dimensional manifold, and with  yajyes converge first. Because the eigenvalues are all negative

a little algebra the following form for the attraction is derived in the calculations presented here, the first nonzero eigenvalue
to converge is the “least negative”.

u, ( up, +1)[(n+l)+l/2]2/(n+1/2)2 To make the discussion more concrete, consider the following

(A12) system

U  \Untig
ich i ' i initi ayy oy,
which is a result de;crlbed section IlA. The initial valueg, u = —kyy, + kzyg +D,— (B.5a)
are derived fromdyg in eq A.6. X
Appendix B: Dynamical-Systems Analysis 8y2_ aZyZ
pp : Dy y y — = 2Ky - 2k,y5 + Dza—x2 (B.5b)

Consider the system of nonlinear reactiaiffusion equations
The semidiscrete method gives a grid mof points for each

ay; azyi species and a system of ordinary differential equations
S =F0 YY) FD— (B
6
dyy », D1
. . ' ot —kyyn + Ko(Y2)™ + _z[yl(k+1) = Y5t Vi)
The index 1" refers here and in subsequent equations to an (AX) (B.63)
individual species. The system of equations in eq B.1 is solved '
once again with a semidiscrete metfbds in section 11B.2. dy,, 5 D,
The system is written as a set of ordinary differential equations  ~5~ = 2Ky — 2Ky(y2)" + @[yZ(k+l) = Yyt Yogen)l
(B.6b)
%=F(y s oY) + 50y ~ e T Yige 1)
ot L N ko Jik1) where Kk’ refers to thekth grid point out ofm and it is again

(B.2) assumed that the grid is evenly spaced. In egs B.6a and B.6b
the second derivative has been replaced by a finite-difference
The second index refers to a point on the grid. Once again it is approximation. These equations are solved with an integrator

assumed that the gnd is even|y spaced.rﬁspecies om gnd for Ordinary differential equations, with LSODE used héfte.

equations. To ensure accuracy, it is advisable to increase theconditions once again define the points along the boundary as
number of grid points until convergence is reached. well as the finite-difference approximation for the second

derivatives of the points adjacent to the boundary.

The linearization and subsequent stability analysis in section  The jJacobian matrix for the system is written in the following
[IB.2 can be extended to the system in eq B.2. Forithe  om

species, linearization gives

gt g2
a(oy), IJ=1 (B.7)
? = z J; (0y); (B.3) I
: The matrix elements in the blocks for points away from the

. . . . . boundary are
J describes localized linear dynamics for the function space. It y

is an infinite-dimensional matrix, which is evaluated here on a °D
grid of points, to make it finite-dimensional.is defined in the [ P

. kk 1 2
following sub-block manner AX

D,
‘]&,}Hl = ‘]&,lkﬂ = E

Jyr =0 for all othermvalues (B.8a)

e 21 _ 21 _
[ .4 Ji =2k, Ji,,= O for all othermvalues (B.8b)

gt gm = 2ky, J&=0forall othermvalues (B.8c)



Reaction-Diffusion Equations: Fundamental Aspects J. Phys. Chem. A, Vol. 110, No. 16, 200&251

than the diffusion equation of section I1A and Appendix A, and
the analysis here is more limited than that in Appendix A. In
analogy to eq A.1, sets of functions described by truncated
expansions are studied. These functions are relaxed versions of

o ) ) the full time dependence of eqs C.2a and C.2b and are written
where they values are equilibrium values. Points adjacent to ¢

the boundary have different matrix elements.

The converged eigenvectors of eq B.8 define low-dimen-
sional, attractive manifolds near the equilibrium distribution,
as they do for ordinary differential equatiotsThe eigenvector
of the least negative eigenvalue defines a one-dimensional
manifold. The subspace of this eigenvector and the eigenvector
whose eigenvalue is the next lowest defines a two-dimensional

2D,

=2 Jll _ 11 D2
AXZ kk+1

— Ykk-17T ;(2
Jit =0 for all othermvalues (B.8d)

Jﬁi = Ay —

ya(xt) = yi{x) +
n-1
[ ZO Ri(L1iby, + L3ib,y) sin’(m + g)ﬂxl ¢ 1mt} +

manifold, etc. Near equilibrium, they define a hierarchy of

relaxation times.

Appendix C: Isomerization with Diffusion

Equations 3.4a and 3.4b define a series ok 2 matrix-
vector products

db,, 1\2
a |_ _[kl+(m+§) ”ZDll .
db,,, Kk,

12,
[k, + (m+ —) 7D ]
dt ’ 2 2 2
b
) s
Dpgm = zmpm (C.1b)
at

with Z™andb™in eq C.1b defined in eq C.1la. The mataxs
diagonalized in the same mannerJas eq 2.30, and this leads
to the following for the time development of the distributions

0 =Yi0) + 5 {IRE(Liibun + Lziban) g+
RI(LTb,, + L, ) €2} sin(m - g)nx (C.2a)

k) = Y300 + 5 ([R5t + L) €7+
RL(LTb, . + Lo, )&} sin(m + %)nx (C.2b)

whereR andL refer again to left and right eigenvectors, which
are labeled by ’. The eigenvalueg.im and Aoy, result from
the diagonalization oZ™ and are

A= S[THZ™) + A (C.3a)
A= %[Tr(zm) — A" (C.3b)

THEZ™ = —(k, + k) — (m + %)znZ(Dl +D,)
(C.3¢c)

A"=

\/ (k + k)2 + 2(m + %)an(kl — k), — D) + (m + %)4n4(D1 —D,? (C.4d)

Appendix D: A Hierarchy of Manifolds for Linear
Reaction—Diffusion Systems

The relaxation of the two-species linear reactiaiffusion

system of section IllA (egs 3.1a and 3.1b) is more complicated

RgZ(Lcl)ZblO + ngbzo) Si”(%x) ¢ (D.1a)
Yo%) = Y519 +

n—1 1

[ Zb ROy (LTiby + Loiby) sin’(m + E)nx e(hmt} n

X
RoAL D10+ Loz Sin(?) ¢ (D.1b)

Equations D.la and D.1b define an ¢ 1)-dimensional
manifold. The limit ‘n” is defined from the eigenvalue spectra
denoted by the eigenvalués,, and A,n

’ll(n—l) = /120 = j'1n (D.2)
where it is assumed that in the physical situations studied (see
section 11IB), all of thed values are negative. For the situation
outlined in eq D.2, th@-dimensional manifold is defined from
the following truncation

y(xt) = yi{x) +

n-1 I 1 h
Zo RA(LTby + Loib,,) sin (m + —)nx ¢ (D.3a)
m= 3 o

2
Y2060 = ¥51(x) +

nt [ 1 1,
zo R(LTibym + Loib,) Sin (m + —)nx g™ (D.3b)
= L 2/

The (0 + 1)-dimensional manifold of eqs D.1la and D.1b can
be defined in many different coordinate systems in the space
of species. Consider the following definitions

Uy = Y1(Xg) — yiq(xﬁ), e U = Ya(X,) — yiq(xg)(DAa)

d, = (LNby, + Lob,) €™ m=<n—1

d,= (ngblo + ngbzo) e (D.4b)

As in Appendix A, define a matriA

(A" =R sir(m + %)xk m<n—-1 (D.5a)

(A= R, sin(%k) (D.5)

The u values are described by the following matrix-vector
product

u" = A"d" (D.6)
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SRREEE

and thed values by

d"= AN " (D.7)
abyby i _
To calculate the value of; andy, on the @ + 1)-dimensional Z Z - ( +})2]sz2 i [(k+})2+ (n+})2]nzD1
manifold, the following must be evaluated 2 2 2
2byas” ,
Z - e—[y+(m+1/2)2n Dt |
V(X1 — yeq(xn+1) U = y—1+ (m+ 2) 7D, — (J + ) 7D,

Zf ™Y, = 20 20( ™), @i, (D.82) s [(m+)] .

abl b, 1™ e —{2+[(k+1/2+(n +1/22 72D}t
k~1n' kn

YoXnr1) = Yo Xgia) = [Z Z - 2)+ m4 ) —[(k+§)2+ (n+§)2]n2D1+

n

. n+1 _ . n+1 m—1
kZo(b )nlﬁk - kZO mZo(b )nk(a )kmum (D8b)

2b a% e —[1+(+1/2P2Dq]t

2 NI
y—1)+m Eﬂ o= | 5/ 1

(E.1b)

The elements oB are

These equations relax asymptotically. To study one- and two-
n . 1 dimensional manifolds it is necessary to study the first two terms
(B")im= R} 3"‘(m+§)xk m=n—-1 (D.9a) of the expansion in eq E.la and the first two terms in the
summations of eq E.1b. This gives the following asymptotic
expressions for the two species

yl(Xit) - yiq =
. (7T (1+2D /) - (37X _—(1+972D )t
The manifold can also be defined in a representation where blosu(?)() e T by S”‘(T) e T (E2)
the independent coordinates gpevalues or in a mixture oy,

values andy, values, and in different parts of the paper this is The expansion foy, at long time consists of three different

B =R, sin(%“) (D.9b)

what is done. spatio-temporal factors
The manifold defined in egs D.8a and D.8b relaxes. The new
manifold reached via this relaxation is defined by Yo(%,t) — ¥54=7,(x,t) + 7,(X,t) + 75(X.1) (E.3)
" The termsr; 72, andrs are defined as
d"h,=0= Zb a’ . D.10
( n ( nmUm ( ) ‘L’l(X f) = e SIV‘( X)e (}’+72Dzl4)t+ e, SIF{—) —(}/Jr972|32/4)t
(E.4a)
A similar analysis to what was done in Appendix A.l ,
demonstrates that eq D.10 defines a manifold that is the samer,(xt) = bfotzo(x) e (Dot 4
as that generated from eqs D.3a and D.3b. The relaxation of 2,y (¥) o2+ |
the manifolds occurs, and the methodology of Appendix A can 10-11%21
be applied bierZ(X) @ (2+972Dy/2)t (E.4b)
u u Jagn (Xt 7. (X) e —(1+a22D/4)t + Do Ton(X) € —(1+972D,/4)t
_n_ n+1 (Dlla) 3( ) 10 30( ) 11 31( ) (E 4C)
U  \Un+ig
U, [u e The quantities necessary to defineare
=|— (D.11b)
U-10  \Yo €0 = by —
ablkblnrgn
Appendix E: Nonlinear Reaction Diffusion System Z m J'[ZDZ 1\2 1\2
y—-2)+—-— (k+ ) (n+ ) a°D,
Equations 4.2a and 4.2b can be solved exactly 4
2by;as’
1 2 Z ; (E.5a)
ya(xt) = yi' + Z) bim Sln[(m+ )J'L’X] g [LHmTL2p Dt ! 7D, [ 1)2 2
2 r—0on+ —|j+—-| D,
(E.1a8) 4 2
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€1 =by —

z ab1kb1nrlin

Z n or°D, 1\2 1\2
(y—2)+ —[(k+—) +(n+—) °D,
2 2
2bjas’

3 ' (E.5b)
] 97°D, 1\2

-1+ —(j+5) 7°D,

The functions necessary to definieare The functions necessary

1
arg sin’(m + E)nx

Too(X) = z )
m 1\2 7D,
(y—2)+ (m+5) a°D, — .
(E.6a)
_ 1
arg; sm[(m + —)nx]
0=Y &
7(X) =
m 1\2 57r2D1
-2+ (m+5) 7D, — .
(E.6b)
. 1
ary sm[(m + —)zrx
0=3 &
Ty(X) =
m 1\2 97°D,
y—2)+ (m+£) nZDZ— 5
(E.60C)
to definers are
_ 1
2a<.{)“sm’(m + —)nx]
2
T5(X) = z 3
m 1\2 7D,
(- 1)+(m+£) 7D, — ;
(E.7a)
. 1
2a§‘sm’(m + —)nx
0=3 &
T3(X) =
m 1\2 97D,
-1+ (m+£) 7°D, —
4 (E7b)

The terms in eqs E:3E.7 are combined to define the one-
dimensional and two-dimensional manifolds in section IV. The
coefficients for the quadratic equation in eq G.13c are

1= To(X,) Sinz(szx ) 271(%,) sm( ;f ) Sm(?’zxﬁ) N

Ty(%,) sm( ) (E.8a)

J. Phys. Chem. A, Vol. 110, No. 16, 2008253

) + Ta(X,) S|n2(—) —Tq

3mx

to = 2Ty (X, )Yufs'n( 2
(3 o7) - 2timasn()

(x,) sin 5 sin 5 27))(X,)Y15 SN (E.8b)

Uz =

3 3mx
T31(%,)Y15 sm( 5 )+r22(x )ylﬁ — sm( ) (E.8c)

Appendix F: Attraction to One-Dimensional Manifolds
for the Nonlinear Reaction—Diffusion System

In what follows, the coordinates describe a path starting with
the projection enumerated in eqs G-43.15. The coordinates
anda values are:

Case 1 1

u 2uryrp t [ F v#g — Auu Sin(%x)
23+ 18 F 3 ~ 4l sinf5)

—tty % 15 — Ay

F.1a
0 (F.1a)

u
== (F.1b)
2
Yo —ug £ () — 4uus
4+ 97°D, 10
= .AC
Y 442D,

with theu values defined in eq E.8 and terms suclugdeing
obvious generalizations. They are formed by replacing terms
such asyi with y10. It is also straightforward, though tedious,
to demonstrate the expected result thgt,® = 0 places the
system on the one-dimensional manifold defined in eq 4.7. For
the other cases, attraction takes the following forms:

Case 1_2

u Yoo Sinz(%)(ﬁ) - (Yw)zfzo(xg) ~ Y15T30(%,) Sin(%)(ﬁ)

up

Vi, sinz(%xﬁ) = 03" Tao%,) — 0)Tadlx,) Si”(ﬂ?xﬁ)

(F.2a)
u vy
=== (F.2b)
U Y
4y + 7D,
oy, = (F.2¢c)
¥ 447D,
Case 2_1
X X,
u, Yoo SINN-| — yys sin|—-
e 2 2 (F.3a)
N I A 25 X,
Yo, SIN 7 18 SN, 7
_ (3nxﬁ) (Snxg)
Ll_2 _ Yo, SIN T - ylﬂ Sin 2 (F 3b)
g . [37%g (3, '
20 SIN\—"| = Yo Sin 5
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4y + 97°D, (F.30) G12=
%21 = 2 o€ RLR! X 3nx 3nx X
4y +a'D, %n[sin( zﬂ) sm( 5 ¢) — sm( 5 'B) sm( ¢)] (G.3c¢)
C 2.2
o sl ) s )
U Yy q= R21 115N > sin >
o0 (F.42) mx,\ (3%,
U RRy, sin(T) sin(T) (G.3d)
u
—(2) = It defines a point along the distribution g$ as
U,

o ™% _[7Xs Yop = Go1¥1p T Goos (G.4a)
You sin? = (Yip) Tzo(X ) — Y15T30(X,) Sin 3

(F.4b) RLRS 3x,)\ [ ax,\ . [(3mx
nginZ(Tﬂ)—(yﬁﬁ)%zdxg)—(y?ﬂ)rso(xg) (%) o= sl *5%) sl ) - sn{ ) sn 7Y

(G.4b)
4+ 7D, (F.40)
? 4y +7D, Uy = 1[RélR(l)l sin( ﬂ) S|n(—¢) -
q 2 2
Appendix G: Two-Dimensional Manifolds RR sin(gm(ﬁ) sm(nx) (G.4c)
1"M1 2

This appendix summarizes information for the two-dimen-
sional manifolds studied in section 1IB.1, section lll, and section
V.

1. Irreversible Unimolecular Reaction. For the system in
section 1IB.2 it is possible to define higher-dimensional
manifolds, because of the ordering of the eigenvalues. A two- G.
dimensional manifold is a plane and is written as

where the notation of eqs 3.8a and 3.8b is used and extended.
Because of the linearity of the system, the two-dimensional
manifolds are planes.

Through the use of the same projection as in eqs G.3 and
4, a two-dimensional manifold for case 2 defines a point along
the y;-distribution as

X)Ys 1 x(Xa.X,)Y,, G.la TTX
Yo = X(meﬁ)[X( o ¢)yﬂ x( B ¢)y ] ( ) SII’I( 2¢)
=—F— G.5
(z,2) =si (nzl) (3”22 il 2} i 74 (6.10) " sin| 2 " o
2(21,2) = sin(— sin 5| ~ Sin\—| sin(—— . R
where the notation of eq 2.19 has been extended in an obvioudt defines a point along thg,-distributions as
way to a third point ag.
2. Isomerization with Diffusion. There are two types of two- Sin(”_xqb)
dimensional manifolds for this system depending on the ordering _ 2
of the eigenvalues. The first two eigenvalues are either Yap = _ (ﬂxg)yza (G.6)
sin{—-
casel ;0> Ay (G.2a) 2
or To describe the attraction to a two-dimensional manifold a
further description of the eigenvalue spectrum is necessary. First,
case 2 Ayp> Ay (G.2b) expand the list of cases in the following manner
1 .
case1_1A,,> 44,> 445 (G.7a)

with the designation of the eigenvalues described in Appendix
C. Because all eigenvalues are negative, these are the largest

casel 2 A;p> > A G.7b
two, or “least negative”. The calculation of the manifolds follows —- 7on e 20 ( )
from section Il. There are a number of ways to project the two-
. : ; : and
dimensional manifolds for a system of two species. The
independent coordinates used here wilypeandy,,. For case case 2 1 20> Ay > Ay (G.7¢)

1, with this projection, the two-dimensional manifold defines a

point alongy; as Only one case is described here. Through the use of the

= OuYas + Ouy. (G.3a) formalism outlined here and in Appendix D, all projections of
115~ S22 all cases are straightforward. There are three coordinates that
3mX, X describe the approach to a two-dimensional manifold and the
[Rolel sm( 2 ) sm( 2¢) subsequent motion on it, if it is assumed that the system passes
X, 277X through a three-dimensional manifold as it relaxes to the two-
Ri,R, sm( )sm( ¢)] (G.3b) dimensional manifold. The behaviors of these coordinates in
2 2 phase space are once again straightforward
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u U,\ o
== (—3) (G.8a)
U \Ug
u U,\ o2
== (—f)) (G.8Db)
U \Up
where thea values are
A
0y = o (G.9a)
A0
A
0y = 22 (G.9b)
/lll

Theu-coordinates can be written in the manner of Appendix
D. Theu;-coordinate is
U

U _ CaY1s T Cs¥as T Ca¥ay
W Capyis + Cay, + Cadvy

The matrix elements are

(G.10)

Cyy = RglRél[sm(n; ) sm(szxd’)
Sm(B:;x ) sm( )] (G.11a)

(G.11b)

(G.11¢)

Equations G.11laG.1lc demonstrate that as the system
relaxes andi; — 0, it relaxes to the two-dimensional manifold
shown in eqs G.3aG.3c, as expected from Appendix D.

In terms of the variable§,, {,, and(s, the attractiveness of
the two-dimensional manifolds has three possible values

hyp_ 4+ 250, — 16+ 2007°, &, + 6257°C,2

o =

MU 44 9n%, — 16+ 727%,8, + 8L
(G.12a)
o hao A+ %L+ 16+ 87,0, + ')
127 73
MU 44 957, — 16+ 727%,8, + 817
(G.12b)
/111 1
a21—l—2()—a—22 (G.12¢)

3. Nonlinear Reaction-Diffusion System.There are numer-
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of the two-dimensional manifolds. The bases for the representa-
tions of the manifolds are in eqs E&.7 of Appendix E.
Without derivation, the representations are enumerated:

Case 1 1

7T, 37X,
Yig = X11(Xg:X,) sm( 5 )+ E11(X5:%5) sm( 5 ) (G.13a)

You = TaoXX11(Xp:X,) T T31(X,)E14(X.X,) +

TZO(xgp)Xil(xﬂ!Xo) + 251X, )1 12(X5: %) E11(X5:X,) (G.13b)

—pty £ U5 — Augus

2uq

X11= (G.13¢)
[,
Y15~ X118IN >

31X
B
WED

n= (G.13d)

The forms ofui, uo, andus are presented in Appendix E, eq
E.8. Another case is:
Case 2 1

=y (G.14a)

Y1(X)

You = (X Xs)Ya5 T 2 (X5 X5)Y20]  (G.14D)

X (X()"Xﬁ)

This representation is merely the same as the one in section Il
with the same notation for the transformation functjofrom
eq 2.1. The final two cases are:

Cases 1 2and 2 2

(er¢
sin >
e = AR (G.15a)
sin(—ﬁ)
2
_[7x,
Yag = X1(Xg:%,) SIN - +
yzlﬂfzo(x ) YagTao(X,) Ga5h)
X X
S|r|2( ﬂ) sm( ﬁ)
2
X1(XgX5) =
1 [ Too(Xs ))’21/3 Tao(X o)ylﬂ (6.150

s )

Si n(”—xﬁ)
2
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